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ORTHOGONALITY AND PARALLELISM OF OPERATORS ON

VARIOUS BANACH SPACES

T. BOTTAZZI1, C. CONDE1,2, M. S. MOSLEHIAN3, P. WÓJCIK4 AND A. ZAMANI3,5

Abstract. We present some properties of orthogonality and relate them with
support disjoint and norm inequalities in p−Schatten ideals. In addition, we
investigate the problem of characterization of norm–parallelism for bounded
linear operators. We consider the characterization of norm–parallelism prob-
lem in p−Schatten ideals and locally uniformly convex spaces. Later on, we
study the case when an operator is norm–parallel to the identity operator.
Finally, we give some equivalence assertions about the norm–parallelism of
compact operators. Some applications and generalizations are discussed for
certain operators.

1. Introduction

Let (X , ‖ · ‖) be a normed space over K ∈ {R,C}. The orthogonality between
two vectors of X , may be defined in several ways. The so-called Birkhoff–James
orthogonality reads as follows (see [7, 15]): for x, y ∈ X it is said that x is
Birkhoff–James orthogonal (B-J) to y, denoted by x ⊥BJ y, whenever

‖x‖ ≤ ‖x+ γy‖ (1.1)

for all γ ∈ K. If X is an inner product space, then B-J orthogonality is equivalent
to the usual orthogonality given by the inner product. It is also easy to see that
B-J orthogonality is nondegenerate, is homogeneous, but it is neither symmetric
nor additive.

There are other definitions of orthogonality with different properties. We focus
in particular the previous notion and isosceles orthogonality, which is defined as
follows: in a real normed space X , we say that x ∈ X is isosceles orthogonal to
y ∈ X (see [15]) and we write x ⊥I y whenever

‖x+ y‖ = ‖x− y‖. (1.2)

In complex normed spaces one have to consider the following orthogonality rela-
tion

x ⊥I y ⇔

{

‖x+ y‖ = ‖x− y‖
‖x+ iy‖ = ‖x− iy‖.

(1.3)

For a recent account of the theory of orthogonality in normed linear spaces we
refer the reader to [2].
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Orthogonality in the setting of Hilbert space operators has attracted atten-
tion of several mathematicians. We cite some papers which are closer to our
results in chronological order. Stampfli [29] characterized when an operator is
B-J orthogonal to the identity operator. This result was generalized to any pair
of operators by Magajna [20]. In [17], Kittaneh gave necessary and sufficient
conditions such that I ⊥BJ A for p−norm in a finite dimensional context. Also
for matrices, Bhatia and Šemrl [5] obtained a generalization of Kittaneh’s result
and other statements concerning the spectral norm. More recently, some other
authors studied different aspects of orthogonality of bounded linear operators and
elements of an arbitrary Hilbert C∗-module, for instance, see [4, 6, 25, 27].

Furthermore, we say that x ∈ X is norm–parallel to y ∈ X (see [28, 35]), in
short x ‖ y, if there exists λ ∈ T = {α ∈ K : |α| = 1} such that

‖x+ λy‖ = ‖x‖ + ‖y‖. (1.4)

In the framework of inner product spaces, the norm–parallel relation is exactly
the usual vectorial parallel relation, that is, x ‖ y if and only if x and y are linearly
dependent. In the setting of normed linear spaces, two linearly dependent vectors
are norm–parallel, but the converse is false in general. To see this consider the
vectors (1, 0) and (1, 1) in the space C2 with the max–norm. Notice that the
norm–parallelism is symmetric and R-homogenous, but not transitive (i.e., x ‖ y
and y ‖ z ; x ‖ z; see [35, Example 2.7], unless X is smooth at y; see [32,
Theorem 3.1]). It was shown in [35] that the following relation between the
norm–parallelism and B-J orthogonality is valid:

x ‖ y ⇔
(

x ⊥BJ (‖y‖x+ λ‖x‖y) for some λ ∈ T
)

. (1.5)

Some characterizations of the norm–parallelism for Hilbert space operators and
elements of an arbitrary Hilbert C∗-module were given in [14, 32, 33, 34, 35].

We briefly describe the contents of this paper. Section 2 contains basic def-
initions, notation and some preliminary results. In section 3, we present some
properties of orthogonality and relate them with support disjoint and norm in-
equalities in p−Schatten ideals. In the last section, we restrict our attention
to the problem of characterization of norm–parallelism for bounded linear op-
erators. We first consider the characterization of norm–parallelism problem in
p−Schatten ideals and locally uniformly convex spaces. Later on we investigate
the case when an operator is norm–parallel to the identity operator. Finally, we
give some equivalence assertions about the norm–parallelism of compact opera-
tors. Some applications and generalizations are discussed for certain operators.

2. Preliminaries

Throughout the paper, X , Y stand for normed spaces. Further, (H, 〈·, ·〉)
denotes a separable complex Hilbert space. We write BX and SX , respectively,
to show the closed unit ball and the unit sphere of X . The (topological) dual of
X is denoted by X ∗. If there is a unique supporting hyperplane at each point
of SX , then X is said to be smooth. A space X is said to be strictly convex if
every element of SX is an extreme point of BX . Further, X is said to be uniformly
convex if for any sequences {xn} and {yn} in BX with lim

n→∞
‖xn + yn‖ = 2, we
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have lim
n→∞

‖xn − yn‖ = 0. The concept of strictly convex and uniformly convex

spaces have been extremely useful in the study of the geometry of Banach Spaces
(see [16]).

Let B(X ,Y) and K(X ,Y) denote the Banach spaces of all bounded operators
and all compact operators equipped with the operator norm, respectively. We
write K(X ,Y) = K(X ) and B(X ,Y) = B(X ) if X = Y . The symbol I stands
for the identity operator on X . In addition, we denote by MA the set of all unit
vectors at which A attains its norm, i.e., MA = {x ∈ SX ; ‖Ax‖ = ‖A‖}.

For A ∈ B(H) we use R(A) and ker(A), respectively, to denote the range and
kernel of A. We say that A ≤ B whenever 〈Ax, x〉 ≤ 〈Bx, x〉 for all x ∈ H. An
element A ∈ B(H) with A ≥ 0 is called positive. For any L ⊆ B(H), L+ denotes
the subset of all positive operators of L.

For any compact operator A ∈ K(H), let s1(A), s2(A), · · · be the singular

values of A, i.e. the eigenvalues of the “absolute value-norm” |A| = (A∗A)
1

2 of A,
in decreasing order and repeated according to multiplicity. Here A∗ denotes the
adjoint of A. If A ∈ K(H) and p > 0, let

‖A‖p =

( ∞
∑

i=1

si(A)
p

)
1

p

= (tr|A|p)
1

p , (2.1)

where tr is the usual trace functional, i.e. tr(A) =
∑∞

j=1〈Aej , ej〉, where {ej}
∞
j=1

is an orthonormal basis of H. Equality (2.1) defines a norm (quasi-norm) on the
ideal Bp(H) = {A ∈ K(H) : ‖A‖p < ∞} for 1 ≤ p < ∞ (0 < p < 1), called the

p-Schatten class. It is known that the so-called Hilbert-Schmidt class B2(H) is
a Hilbert space under the inner product 〈A,B〉HS := tr(B∗A). The ideal B1(H)
is called the trace class. It is not reflexive and, in particular, is not a uniformly
convex space, because it contains a subspace isomorphic to l1 (the subspace can
be chosen to be the operators diagonal with respect to a given orthonormal basis
of H).

According to [3], we define the concept of disjoint supports as follows.

Definition 2.1. Let A ∈ B(H). The right support r(A) of A is the orthogonal
projection of H onto ker(A)⊥ = {h ∈ H : 〈h, x〉 = 0 for all x ∈ ker(A)} and

the left support l(A) of A is the orthogonal projection of H onto R(A). Two
operators A,B ∈ B(H) have:

(1) right disjoint supports if and only if r(A)r(B) = 0.
(2) left disjoint supports if and only if l(A)l(B) = 0.
(3) disjoint supports if and only if r(A)r(B) = 0 and l(A)l(B) = 0.

Let us recall that if PN denotes the orthogonal projection onto the closed
subspace N of H, then PNPQ = 0 if and only if N ⊥ Q (i.e. 〈x, y〉 = 0 for
all x ∈ N, y ∈ Q). We observe that r(A)r(B) = 0 if and only if AB∗ = 0 and
similarly with the left disjoint support. Consequently, two operators A,B have
disjoint supports if and only if R(A) ⊥ R(B) and R(A∗) ⊥ R(B∗).

The following is a well-known result, which we use in the present article. Let
A,B ∈ Bp(H). Then, the following conditions are equivalent:
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(1) A∗AB∗B = 0 (or AA∗BB∗ = 0).
(2) |A||B| = |B||A| = |A∗||B∗| = |B∗||A∗| = 0.
(3) A and B have disjoint supports.

The classical Clarkson–McCarthy inequalities assert that if A,B ∈ Bp(H), then

‖A+B‖pp + ‖A−B‖pp ≤ 2(‖A‖pp + ‖B‖pp) (2.2)

for 1 ≤ p ≤ 2, and

‖A+B‖pp + ‖A−B‖pp ≥ 2(‖A‖pp + ‖B‖pp) (2.3)

for 2 ≤ p < ∞. If p = 2, equality always holds and if p 6= 2, equality holds if and
only if A∗AB∗B = 0. This inequality implies the uniform convexity of Bp(H) for
1 < p < ∞. If 0 < p ≤ 1, then

‖A+B‖pp ≤ ‖A‖pp + ‖B‖pp. (2.4)

Furthermore, if p < 1 the previous equality holds if and only if A∗AB∗B = 0.
The previous inequality motivates us to study conditions such that equality in
(2.4) holds for 1 ≤ p < ∞. These and more results related with these ideals can
be seen, for instance, in [24] and [13].

3. Orthogonality in Bp(H)

3.1. Birkhoff–James and isosceles orthogonality in Bp(H) ideals.

Let Bp(H) be a p-Schatten ideal with p > 0. Using (1.1) the Birkhoff–James
orthogonality for any A,B ∈ Bp(H) is

A ⊥p
BJ B ⇔

(

‖A‖p ≤ ‖A+ γB‖p for all γ ∈ C
)

.

The following result is a direct consequence of [22, Lemma 3.1], which relates
the concept of disjoint supports with B-J orthogonality in p-Schatten ideal. It is
true for any symmetric ideal associated to a unitarily invariant norm, but in this
paper we restrict ourselves to the p-Schatten ideals to unify our study.

Proposition 3.1. If A + B ∈ Bp(H) with 1 ≤ p < ∞ and R(A) ⊥ R(B), then
A,B ∈ Bp(H) and A ⊥p

BJ B and B ⊥p
BJ A.

The following statement is a reverse of Proposition 3.1 for positive operators
in Bp(H).

Theorem 3.2. Let 1 < p < ∞ and A,B ∈ Bp(H)+. If A ⊥p
BJ B, then A and B

have disjoint supports.

Proof. Define the real valued function

f(γ) = ‖A+ γB‖p.

Without loss of generality, we may assume that A 6= 0. By the hypothesis, f
attains its minimum at γ = 0 and so, by [1, Theorem 2.3],

0 =
d

dγ
‖A+ γB‖p

∣

∣

∣

∣

γ=0

= tr

(

Ap−1B

‖A‖p−1
p

)

,



ORTHOGONALITY AND PARALLELISM OF OPERATORS ON BANACH SPACES 5

whence tr (Ap−1B) = 0. We observe that

0 = tr
(

Ap−1B
)

= tr
(

B1/2
(

Ap−1
)1/2 (

Ap−1
)1/2

B1/2
)

= tr
[

(

(Ap−1)1/2B1/2
)∗ (

(Ap−1)1/2B1/2
)

]

=
〈

(

Ap−1
)1/2

B1/2,
(

Ap−1
)1/2

B1/2
〉

HS
,

which implies that (Ap−1)
1/2

B1/2 = 0. Thus,

Ap−1B =
(

Ap−1
)1/2 (

Ap−1
)1/2

B1/2B1/2 = 0.

Since A,B are compact operators, there exists an orthonormal basis {ei}i∈I of H
such that

Ap−1 =
∑

i∈I
αiei ⊗ ei and B =

∑

i∈I
βiei ⊗ ei,

with αi, βi ≥ 0 for every i ∈ I. Hence and αiβi = 0 for every i ∈ I. Finally, we
have

tr(AB) = tr





(

∑

i∈I
αiei ⊗ ei

)
1

p−1
(

∑

i∈I
βiei ⊗ ei

)



 =
∑

i∈I
α

1

p−1

i βi = 0

and this implies that

0 = tr(AB) = tr
(

(

A1/2B1/2
)∗

A1/2B1/2
)

= ‖A1/2B1/2‖22.

�

Remark 3.3. The previous result does not hold if A or B are not positive oper-

ators. For instance, let A =

[

1/2 0
0 −1/2

]

and I =

[

1 0
0 1

]

. Then by Corollary

3.10, since tr(A) = 0 we get I ⊥p
BJ A. Nevertheless, I and A clearly do not have

disjoint supports.
Furthermore, the previous result does not hold either for p = 1 or p = ∞. Let

B =

[

1 0
0 0

]

. Then it is easy to see that B ⊥1
BJ I and I ⊥∞

BJ A. Nevertheless, I

and B clearly do not have disjoint supports.

In [8], it was proved that for any A,B ∈ B1(H)+ it holds that

A ⊥1
I B ⇔ AB = BA = 0 . (3.1)

From the positivity of A,B and A +B we infer that

‖A+B‖1 = tr(A+B) = tr(A) + tr(B) = ‖A‖1 + ‖B‖1.

Recently, Li and Li [18] gave a characterization of disjoint supports for operators
in the trace class ideal. In the same direction, we present the following result.

Theorem 3.4. Let 0 < p < ∞ and A,B ∈ Bp(H). Then, the following state-
ments are equivalent:

(i) A and B have disjoint supports.
(ii) ‖λA− µB‖pp = ‖λA+ µB‖pp = |λ|p‖A‖pp + |µ|p‖B‖pp, for any λ, µ ∈ C.
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(iii) ‖A−B‖pp = ‖A+B‖pp = ‖A‖pp + ‖B‖pp.

Proof. (i)⇒(ii) By the hypothesis λA and µB have disjoint supports and λA +
µB ∈ Bp(H), then it follows from [21, Theorem 1.7] that

‖λA+ µB‖pp = |λ|p‖A‖pp + |µ|p‖B‖pp.

Analogously, ‖λA− µB‖pp = |λ|p‖A‖pp + |µ|p‖B‖pp.
(ii)⇒(iii) It is trivial.
(iii)⇒(i) We have

‖A+B‖pp + ‖A−B‖pp = 2
(

‖A‖pp + ‖B‖pp

)

or equivalently, by utilizing [24, Theorem 2.7], A∗AB∗B = 0, which ensures that
A and B have disjoint supports. �

According to (1.3), we say that A,B ∈ Bp(H) are isosceles orthogonal, denoted
by A ⊥p

I B if and only if

‖A+ B‖p = ‖A− B‖p and ‖A+ iB‖p = ‖A− iB‖p.

The following lemma is a well-known result from McCarthy [24] for positive op-
erators. We will use it to prove Proposition 3.6.

Lemma 3.5 (McCarthy inequality). If A,B ∈ Bp(H)+ for any p ≥ 1, then

21−p‖A+B‖pp ≤ ‖A‖pp + ‖B‖pp ≤ ‖A+B‖pp.

Observe that in the cone of positive operators Bp(H)+ we consider the isosceles
orthogonality notion as in (1.2).

Proposition 3.6. If A,B ∈ Bp(H)+, 1 ≤ p < 2 and A ⊥p
I B, then

‖A+B‖pp = ‖A−B‖pp = ‖A‖pp + ‖B‖pp.

Proof. By Clarkson–McCarthy inequality (2.2) and isosceles orthogonality we
have

2‖A+B‖pp = ‖A+B‖pp + ‖A−B‖pp ≤ 2
(

‖A‖pp + ‖B‖pp
)

and
‖A+B‖pp ≤ ‖A‖pp + ‖B‖pp.

Now using the previous lemma we obtain that

‖A+B‖pp = ‖A‖pp + ‖B‖pp.

�

There exists a comparison between isosceles and Birkhoff–James orthogonali-
ties. James in [15] proved that if ‖x − y‖ = ‖x + y‖ for any elements x, y in a
normed space X , then ‖x‖ ≤ ‖x+ γy‖ for all |γ| ≥ 1. The next statement shows
that in the cone of positive operators, both notions of orthogonality coincide.

Theorem 3.7. If A,B ∈ Bp(H)+, with 1 < p ≤ 2, then the following statements
are equivalent:

(i) A ⊥p
I B.

(ii) A ⊥p
BJ B.
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Also for p = 1, the following statements are equivalent:

(iii) A ⊥1
I B.

(iv) AB = BA = 0.

Proof. Combining Propositions 3.1, 3.6, Theorems 3.2 and 3.4 we obtain the
equivalence desired. On the other hand, the result for p = 1 is true due to (3.1).

We remark that for p = 1 the equivalence between Birkhoff–James and isosceles
orthogonality does not hold. For instance, let B be the same matrix as in Remark
3.3. Then B ⊥1

BJ I and ‖B + I‖1 6= ‖B − I‖1.
�

3.2. Bp(H) ideals as semi-inner product spaces.

Recall that in any normed space (X , ‖ · ‖) one can construct (as noticed by
Lumer [19] and Giles [12]) a semi-inner product, i.e., a mapping [·, ·] : X×X → K
such that

(1) [x, x] = ‖x‖2,
(2) [αx+ βy, z] = α[x, z] + β[y, z],
(3) [x, γy] = γ[x, y],
(4) |[x, y]|2 ≤ ‖x‖2‖y‖2,

for all x, y, z ∈ X and all α, β, γ ∈ K. There may be more than one semi-inner
product on a space. It is well known that in a normed space there exists exactly
one semi-inner product if and only if the space is smooth. If X is an inner product
space, the only semi inner product on X is the inner product itself. More details
can be found in [19, 12].

Using Lumer’s ideas, we endowed the Bp(H) ideals with semi-inner products
as follows.
Let 1 ≤ p < ∞, we define for any A,B ∈ Bp(H)

[B,A] = ‖A‖2−p
p tr

(

|A|p−1U∗B
)

,

where U |A| is the polar decomposition of A. Then, [·, ·] satisfies (1) to (4). In
fact, items (1) to (3) are easily to check. To prove Property (4), we observe that

∣

∣tr(|A|p−1U∗B)
∣

∣ ≤ tr
∣

∣|A|p−1U∗B
∣

∣ =
∥

∥|A|p−1U∗B
∥

∥

1

≤ ‖B‖p
∥

∥|A|p−1U∗∥
∥

q
≤ ‖B‖p

∥

∥|A|p−1
∥

∥

q
,

where 1
p
+ 1

q
= 1 and also

∥

∥|A|p−1
∥

∥

q

q
= tr

(

|A|p−1
)q

= tr|A|p = ‖A‖pp,

whence
∥

∥|A|p−1
∥

∥

q
= ‖A‖p/qp = ‖A‖p−1

p .

Thus,

|[B,A]|2 =
∣

∣

∣
‖A‖2−p

p

[

tr
(

|A|p−1U∗B
)]

∣

∣

∣

2

≤ ‖A‖2(2−p)
p ‖B‖2p‖A‖

2(p−1)
p = ‖B‖2p‖A‖

2
p.

Therefore,
(

Bp(H), [·, ·]
)

is a semi-inner product space in the sense of Lumer.
Moreover, the continuous property for semi-inner product spaces holds for almost
all of these operator ideals, as we state in the following result.
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Theorem 3.8. Let 1 < p < ∞. Then,
(

Bp(H), [·, ·]
)

is a continuous semi-inner
product space and for A,B ∈ Bp(H) the following statements are equivalent:

(i) A ⊥p
BJ B.

(ii) [B,A] = 0.

Proof. It is a direct consequence of [12, Theorem 3], since any p-norm in Bp(H)
is Gâteaux differentiable for 1 < p < ∞. The characterization of Birkhoff–James
orthogonality follows directly from [12, Theorem 2]. �

Remark 3.9. Theorem 3.8 was been proved for matrices in [5, Theorem 2.1]. In
this context, the converse still holds for p = 1 and A invertible.

The following result was obtained by Kittaneh in [17].

Corollary 3.10. Let A be in the algebra Mn(C) of all complex n × n matrices
and p ∈ [1,∞). Then the following statements are equivalent:

(i) I ⊥p
BJ A.

(ii) tr(A) = 0.

Proof. Theorem 3.8 ensures that

I ⊥p
BJ A ⇔ [A, I] = 0 = ‖I‖2−p

p tr
(

|I|p−1U∗A
)

⇔ tr(A) = 0,

since |I|p−1U∗ = I.
On the other hand, we observe that ‖ · ‖1 is Gâteaux differentiable at the

identity. �

Theorem 3.11. Let A ∈ B(H). Then, the following conditions are equivalent:

(i) A = 0.
(ii) |I + γA| ≥ I for all γ ∈ C.
(iii) |I + γA| = |I − γA| for all γ ∈ C.

In the case when H is finite dimensional, for every p ∈ [1,∞), each one of these
assertions implies that I ⊥p

BJ A.

Proof. (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii) Suppose (ii) holds. Then |I + γA|2 ≥ I for all γ ∈ C. Hence

γA+ γA∗ + |γ|2|A|2 ≥ 0 (γ ∈ C).

For γ = 1
m
,− 1

m
, i
m
,− i

m
, the above inequality becomes

A+ A∗ +
1

m
|A|2 ≥ 0, A+ A∗ −

1

m
|A|2 ≤ 0 (3.2)

and

iA− iA∗ +
1

m
|A|2 ≥ 0, iA− iA∗ −

1

m
|A|2 ≤ 0. (3.3)

Letting m → ∞ in (3.2) and (3.3) we get

A+ A∗ = 0 and iA− iA∗ = 0

which imply that A = 0. Thus |I + γA| = I = |I − γA| for all γ ∈ C.
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(iii) ⇒ (i) Let |I + γA| = |I − γA| for all γ ∈ C. Then γA + γA∗ = 0 for all
γ ∈ C. For γ = 1, i, we conclude that

A+ A∗ = 0 and iA− iA∗ = 0

which yield that A = 0. �

Theorem 3.12. Let A,B ∈ Mn(C) and p ∈ [1,∞). Let |B + γA| ≥ |B| for all
γ ∈ C. Then, the following statements hold.

(i) tr(B∗A) = 0.
(ii) ker(B + γA) = ker(B) ∩ ker(A) for all γ ∈ C \ {0}.
(iii) Either A or B is noninvertible.
(iv) B ⊥p

BJ A.

Proof. (i) For γ = 1
m
, we have |B+ 1

m
A| ≥ |B|. Hence si(|B+ 1

m
A|) ≥ si(|B|) (1 ≤

i ≤ n). Therefore, si(|B + 1
m
A|2) ≥ si(|B|2) for all 1 ≤ i ≤ n. We have

tr(|B|2) =
n
∑

i=1

si(|B|2)

≤
n
∑

i=1

si(|B +
1

m
A|2)

= tr(|B +
1

m
A|2)

= tr(|B|2) +
1

m
tr(B∗A) +

1

m
tr(A∗B) +

1

m2
tr(|A|2).

Hence

tr(B∗A) + tr(A∗B) +
1

m
tr(|A|2) ≥ 0. (3.4)

Similarity, for γ = − 1
m
, i
m
,− i

m
, we get

tr(B∗A) + tr(A∗B)−
1

m
tr(|A|2) ≤ 0, (3.5)

itr(B∗A)− itr(A∗B) +
1

m
tr(|A|2) ≥ 0 (3.6)

and

itr(B∗A)− itr(A∗B)−
1

m
tr(|A|2) ≤ 0. (3.7)

Taking m → ∞ in (3.4) and (3.5) we obtain

tr(B∗A) + tr(A∗B) = 0. (3.8)

Also, letting m → ∞ in (3.6) and (3.7) we get

itr(B∗A)− itr(A∗B) = 0. (3.9)

Now, by (3.8) and (3.9), we conclude that tr(B∗A) = 0.
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(ii) Obviously, ker(B) ∩ ker(A) ⊆ ker(B + γA). We prove ker(B + γA) ⊆
ker(B) ∩ ker(A). Let x ∈ ker(B + γA) for γ 6= 0. First note that if Bx = 0, then
γAx = 0, whence x ∈ kerA. Next, we observe that

x ∈ ker (B + γA) = ker (|B + γA|) .

By virtue of the hypothesis we have

0 = 〈|B + γA|x, x〉 ≥ 〈|B|x, x〉 ≥ 0,

that is, x ∈ ker(|B|) = ker(B). We also see that ker(B + γA) = ker(B) ∩ ker(A)
is equivalent to the range additivity property R(B∗ + γA∗) = R(B∗) + R(A∗).

(iii) Now, let A be invertible. Then {0} = ker(B) ∩ ker(A) = ker(B + γA) for
all γ ∈ C \ {0}. Hence B + γA is invertible for all γ ∈ C \ {0}. Furthermore,
we have 1

γ
A−1(B + γA) = I + 1

γ
A−1B for all γ ∈ C \ {0}. Thus the spectrum of

A−1B consists of exactly one point. Hence A−1B is noninvertible and so is B.
(iv) Let p ∈ [1,∞). For an orthonormal basis {ei} consisting of eigenvectors of

B and for all γ ∈ C, we have

‖B‖p =
∥

∥|B|
∥

∥

p
=
(

n
∑

i=1

〈|B|ei, ei〉
p
)

1

p

≤
(

n
∑

i=1

〈|B + γA|ei, ei〉
p
)

1

p

≤
∥

∥

∥
|B + γA|

∥

∥

∥

p
= ‖B + γA‖p.

Hence ‖B‖p ≤ ‖B + γA‖p, or equivalently B ⊥p
BJ A. �

The following example shows that statements (i), (ii) and (iii) in the above
theorem, are not equivalent to |B + γA| ≥ |B| for all γ ∈ C, in general.

Example 3.13. Let B =

[

1 0
0 1

]

and A =

[

1 1
−1 −1

]

. Simple computations show

that tr(B∗A) = 0, A is noninvertible and B ⊥p
BJ A for all p ∈ [1,∞). But for

γ = 1, we have 1√
2

[

3 −1
−1 1

]

= |B + A| � |B| =

[

1 0
0 1

]

.

As a consequence of Theorem 3.12, we have the following result.

Corollary 3.14. Let A,B ∈ Mn(C) satisfy B∗A ≥ 0. Then, the following con-
ditions are equivalent:

(i) B∗A = 0.
(ii) |B + γA| ≥ |B| for all γ ∈ C.

Furthermore, for every p ∈ [1,∞), each one of these assertions implies that
B ⊥p

BJ A.

4. Norm–parallelism of operators

4.1. Norm–parallelism in p-Schatten ideals.

Let Bp(H) be a p-Schatten ideal with p > 0. According to [20], we say that
A,B ∈ Bp(H) are norm–parallel, denoted by A‖pB, if there exists λ ∈ T such
that

‖A+ λB‖p = ‖A‖p + ‖B‖p.
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The following proposition gives a characterization of parallelism in Bp(H). This
result was previously obtained in [34], for 1 < p ≤ 2, with a different proof.

Proposition 4.1. Let A,B ∈ Bp(H) with 1 < p < ∞. Then, the following
conditions are equivalent:

(i) A‖pB.
(ii) A,B are linearly dependent.

Proof. As we observed, it is evident that if A and B are linearly dependent, then
A‖pB. Conversely, if A‖pB, then there exists λ ∈ T such that

‖A+ λB‖p = ‖A‖p + ‖B‖p = ‖A‖p + ‖λB‖p.

According to [23, Corollary 1.5], it is equivalent to
∥

∥

∥

∥

∥

A

‖A‖p
+

λB

‖λB‖p

∥

∥

∥

∥

∥

p

= 2.

Since Bp(H) is a uniformly convex space for 1 < p < ∞, so
∥

∥

∥

A
‖A‖p

+ λB
‖λB‖p

∥

∥

∥

p
= 2

implies that there exists r ∈ R such that B = r
λ
A (see [9]). Thus A and B are

linearly dependent. �

One can similarly show that for any uniformly convex Banach space X the
conditions of parallelism and lineal dependence are equivalent.

The following remark shows that the equivalence between p−parallelism and
linear dependence does not hold for p = 1,∞.

Remark 4.2. Let A =

[

1 0
0 0

]

and I =

[

1 0
0 1

]

. Then, it is trivial that

‖A+ I‖1 = 3 = ‖A‖1 + ‖I‖1,

‖A+ I‖ = 2 = ‖A‖+ ‖I‖.

It is however evident that A and I are linearly independent.

In [35] the authors related the concept of parallelism to the Birkhoff–James
orthogonality for the p−Schatten norm and H a finite dimensional Hilbert space.
Utilizing the same ideas, we generalize it to any arbitrary dimension.

Theorem 4.3. Let A,B ∈ Bp(H) with polar decompositions A = U |A| and B =
V |B|, respectively. If 1 < p < ∞, then the following conditions are equivalent:

(i) A‖pB.
(ii) ‖A‖p

∣

∣tr(|A|p−1U∗B)
∣

∣ = ‖B‖p tr(|A|
p).

(iii) ‖B‖p
∣

∣tr(|B|p−1V ∗A)
∣

∣ = ‖A‖p tr(|B|p).
(iv) A,B are linearly dependent.

Remark 4.4. In [33], for two trace-class operators A and B, the following charac-
terizations was proved.

(1) A‖1B.
(2) There exist a partial isometry V and λ ∈ T such that A = V |A| and

B = λV |B|.
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(3) There exists λ ∈ T such that
∣

∣

∣
tr(|A|) + µ tr(U∗B)

∣

∣

∣
≤
∥

∥

∥
PkerA∗(A+ µB)PkerA

∥

∥

∥

1
,

where A = U |A| is the polar decomposition of A and µ =
‖A‖

1

‖B‖
1

λ.

If A is invertible, then (1) to (3) are also equivalent to

(4)
∣

∣

∣
tr
(

|A|A−1B
)

∣

∣

∣
= ‖B‖1.

As an immediate consequence of Remark 4.4 (for p = 1) and Theorem 4.3 (for
1 < p < ∞), we have the following result.

Corollary 4.5. Let A ∈ Mn(C) and p ∈ [1,∞). Then, the following conditions
are equivalent:

(i) A‖pI.

(ii) |tr(A)| = n
p−1

p ‖A‖p.

4.2. Norm–parallelism to the identity operator.

In this section we investigate the case when an operator is norm–parallel to the
identity operator. In the context of bounded linear operators on Hilbert spaces,
the well-known Daugavet equation

‖A+ I‖ = ‖A‖+ 1

is a particular case of parallelism; see [30, 34] and the references therein. Such
equation is one useful property in solving a variety of problems in approximation
theory. We notice that if A ∈ B(H) satisfies the Daugavet equation, then A
is a normaloid operator, i.e., ‖A‖ = w(A) where w(A) is the numerical radius
of A. Reciprocally, a normaloid operator does not necessarily satisfy Daugavet
equation, for instance consider A = −I.

In order to obtain a characterization of norm–parallelism let us give the fol-
lowing definition. The numerical radius is the seminorm defined on B(X ) by

v(A) := sup
{

|x∗(Ax)| : x ∈ SX , x
∗ ∈ SX ∗ , x∗(x) = 1

}

for each A ∈ B(X ).

Theorem 4.6. Let X be a Banach space and A ∈ B(X ). Then the following
statements are equivalent:

(i) A ‖ I.
(ii) ‖A‖ = v(A).

Proof. (i)⇒(ii) Suppose (i) holds. Since the norm–parallelism is symmetric and
R-homogenous, so there exists λ ∈ T such that

‖I + λrA‖ = 1 + |r|‖A‖ (r ∈ [0,+∞)).

It was shown in [10] that

sup
{

Rex∗(λAx) : x ∈ SX , x
∗ ∈ SX ∗ , x∗(x) = 1

}

= lim
r→0+

‖I + λrA‖ − 1

r
,
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hence

sup
{

Rex∗(λAx) : x ∈ SX , x
∗ ∈ SX ∗ , x∗(x) = 1

}

= ‖A‖.

Now, by the above equality, we have

‖A‖ ≥ v(A) = v(λA) ≥ sup
{

Rex∗(λAx) : x ∈ SX , x
∗ ∈ SX ∗ , x∗(x) = 1

}

= ‖A‖.

Hence ‖A‖ = v(A).
(ii)⇒(i) Let ‖A‖ = v(A). For every ε > 0, we may find x ∈ SX and x∗ ∈ SX ∗

such that x∗(x) = 1 and
∣

∣x∗(Ax)
∣

∣ > ‖A‖ − ε. Let x∗(Ax) = λ
∣

∣x∗(Ax)
∣

∣ for some
λ ∈ T. We have

1 + ‖A‖ ≥ ‖I + λA‖ ≥ ‖x+ λAx‖

≥
∣

∣

∣
x∗(x+ λAx

)

∣

∣

∣
=
∣

∣

∣
x∗(x) + λx∗(Ax)

)

∣

∣

∣

=
∣

∣

∣
1 + λ

(

λ
∣

∣x∗(Ax)
∣

∣

)

∣

∣

∣
= 1 +

∣

∣x∗(Ax)
∣

∣ > 1 + ‖A‖ − ε.

Hence

1 + ‖A‖ ≥ ‖I + λA‖ > 1 + ‖A‖ − ε.

Letting ε → 0+, we obtain ‖I + λA‖ = 1 + ‖A‖, or equivalently, ‖A + λI‖ =
‖A‖+ 1. Thus A ‖ I. �

In the following proposition, we present a new proof of the previous result in
Hilbert space context.

Proposition 4.7. Let H be a Hilbert space and A ∈ B(H). Then the following
statements are equivalent:

(i) A ‖ I.
(ii) ‖A‖ = w(A).

Proof. (i)⇒(ii) By (1.5), I ⊥BJ ‖A‖I − λA for some λ ∈ T. Using [20] or [5],
there exists a sequence {xn} of unit vectors such that

(1) ‖xn‖ = 1 → ‖I‖ and
(2) 〈λA∗xn, xn〉 → ‖A‖.

Then,

| |〈A∗xn, xn〉| − ‖A‖ | ≤
∣

∣〈λA∗xn, xn〉 − ‖A‖
∣

∣→ 0

when n → ∞. Hence w(A∗) = w(A) = ‖A‖. From this we deduce that A is
normaloid.
(ii)⇒(i) Let (ii) holds. It is known that for any operator A ∈ B(H), w(A) = ‖A‖
if and only if r(A) = ‖A‖, where r(A) is the spectral radius of A. So that there
exists a sequence {yn} of unit vectors such that |〈A∗yn, yn〉| → ‖A‖. We denote
zn = eiθn|〈A∗yn, yn〉|. By the complex Bolzano-Weierstrass Theorem, there exists
a subsequence {θnk

} such that eiθnk → eiθ. Then znk
→ eiθ‖A‖ or equivalently

〈eiθ‖A‖I − A∗xnk
, xnk

〉 → 0 from which we deduce that I ⊥BJ eiθ‖A‖I − A and
this completes the proof. �
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4.3. Norm–parallelism in locally uniformly convex spaces.

A Banach space X is said to be locally uniformly convex whenever for each
x ∈ SX and each 0 < ε < 2 there exists some 0 < δ < 1 such that y ∈ BX ,
and ‖x − y‖ ≥ ε imply

∥

∥

x+y
2

∥

∥ < 1 − δ. Note that in a locally uniformly convex
the following condition holds: if for any sequence {xn} in BX and for any y in
SX with lim

n→∞
‖xn + y‖ = 2, we have lim

n→∞
‖xn − y‖ = 0. It is obvious that every

uniformly convex space is also locally uniformly convex.

Lemma 4.8. Let X ,Y be Banach spaces. Suppose that Y is locally uniformly
convex. Let A ∈ K(X ,Y) and B ∈ B(X ,Y). Suppose that A 6= 0 6= B. If A ‖ B,
then there are λ ∈ T, {xn} ⊂ SX and y ∈ SY such that

lim
n→∞

A

‖A‖
xn = y, lim

n→∞
λ

B

‖B‖
xn = y.

Proof. Suppose that A ‖ B holds. Since the norm–parallelism is R-homogenous,
we have A

‖A‖ ‖ B
‖B‖ . Hence, there exists λ ∈ T such that

∥

∥

∥

∥

A

‖A‖
+ λ

B

‖B‖

∥

∥

∥

∥

=

∥

∥

∥

∥

A

‖A‖

∥

∥

∥

∥

+

∥

∥

∥

∥

B

‖B‖

∥

∥

∥

∥

= 2.

Since

sup

{
∥

∥

∥

∥

A

‖A‖
xn + λ

B

‖B‖
xn

∥

∥

∥

∥

: xn ∈ SX

}

=

∥

∥

∥

∥

A

‖A‖
+ λ

B

‖B‖

∥

∥

∥

∥

,

there exists a sequence of unit vectors {xn} in X such that

lim
n→∞

∥

∥

∥

∥

A

‖A‖
xn + λ

B

‖B‖
xn

∥

∥

∥

∥

= 2. (4.1)

By virtue of compactness of A, there exist a subsequence {xnk
} and y ∈ SY such

that

lim
k→∞

A

‖A‖
xnk

= y. (4.2)

From
∥

∥

∥

∥

A

‖A‖
xnk

+ λ
B

‖B‖
xnk

∥

∥

∥

∥

≤

∥

∥

∥

∥

A

‖A‖
xnk

− y

∥

∥

∥

∥

+

∥

∥

∥

∥

y + λ
B

‖B‖
xnk

∥

∥

∥

∥

≤

∥

∥

∥

∥

A

‖A‖
xnk

− y

∥

∥

∥

∥

+ ‖y‖+

∥

∥

∥

∥

λ
B

‖B‖
xnk

∥

∥

∥

∥

≤

∥

∥

∥

∥

A

‖A‖
xnk

− y

∥

∥

∥

∥

+ 1 + 1

as well as (4.1) and (4.2) we obtain lim
n→∞

∥

∥

∥
λ B

‖B‖xnk

∥

∥

∥
= 1 and lim

n→∞

∥

∥

∥
y + λ B

‖B‖xnk

∥

∥

∥
=

2. Since Y is locally uniformly convex, we infer that limn→∞

∥

∥

∥
λ B

‖B‖xnk
− y
∥

∥

∥
= 0.

Thus limn→∞ λ B
‖B‖xnk

= y. Now, the proof is completed. �

Theorem 4.9. Let X be a closed subspace of a locally uniformly convex Banach
space Y. Let J ∈ B(X ,Y) denote the inclusion operator (i.e., Jx = x for all x in
X ). Let A ∈ K(X ,Y). Then the following statements are equivalent:
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(i) A ‖ J .
(ii) λ‖A‖ is an eigenvalue of A for some λ ∈ T.

Proof. (i)⇒(ii) Suppose that A ‖ J holds. It follows from Lemma 4.8 that, there
exist a subsequence {xn} ⊂ SX and y ∈ SX and λ ∈ T such that

lim
k→∞

A

‖A‖
xn = y, lim

k→∞
λxn = y. (4.3)

Due to A is continuous and using the second equality in (4.3), we get

lim
k→∞

A

‖A‖
(λxn) =

A

‖A‖
y. (4.4)

By the first equality in (4.3) and by (4.4) we reach that A
‖A‖y = λy, or equivalently,

Ay = λ‖A‖y. Thus λ‖A‖ is an eigenvalue of A.
(ii)⇒(i) Suppose (ii) holds. So, there exists x ∈ X \{0} such that Ax = λ‖A‖x.

We have

‖A+ λJ‖ ≥

∥

∥

∥

∥

(A+ λJ)
x

‖x‖

∥

∥

∥

∥

=

∥

∥

∥

∥

λ‖A‖
x

‖x‖
+ λ

x

‖x‖

∥

∥

∥

∥

= ‖A‖+ 1 ≥ ‖A+ λJ‖.

Thus ‖A+ λJ‖ = ‖A‖+ 1 = ‖A‖+ ‖J‖, which means that A ‖ J . �

Remark 4.10. Notice that the condition of compactness in the implication (i)⇒(ii)
of Theorem 4.9 is essential. For example, consider the right shift operator A :
ℓ2 −→ ℓ2 defined by A(ξ1, ξ2, ξ3, · · · ) = (0, ξ1, ξ2, ξ3, · · · ). It is easily seen that
A ‖ I but A has no eigenvalues.

Let (Ω,M, ρ) be a measure space. It is well known that every Lp(Ω,M, ρ) space
with 1 < p < ∞ is a uniformly convex Banach space. Therefore, as a consequence
of Theorem 4.9, we have the following result.

Corollary 4.11. Let (Ω,M, ρ) be a measure space and A ∈ K
(

Lp((Ω,M, ρ)
)

with
1 < p < ∞. Then the following statements are equivalent:

(i) A ‖ I.
(ii) λ‖A‖ is an eigenvalue of A for some λ ∈ T.

Remark 4.12. Notice that in the implication (i)⇒(ii) of Corollary 4.11 the con-
dition 1 < p < ∞ is essential. For example, let x(t) = sin(πt) and y(t) =
cos(πt) with 0 ≤ t ≤ 1. Consider the rank-one operator A = x ⊗ y. Then
A ∈ K

(

L1([0, 1])
)

∪ K
(

L∞([0, 1])
)

. It is easily seen that A ‖ I but the operator
A has no non-zero eigenvalue.

Let X be a normed space and A ∈ B(X ). Recall that an invariant subspace for
A is a closed linear subspace X0 of X such that A(X0) ⊆ X0. The following result
shows that the notion of parallelism is related to the invariant subspace problem.

Corollary 4.13. Let X be a locally uniformly convex Banach space and A ∈
K(X ). If A ‖ I, then the operator A has a invariant subspace of dimension one.

Proof. Let A ‖ I. It follows from Theorem 4.9 that there exist λ ∈ T and
x0 ∈ X \ {0} such that Ax0 = λ‖A‖x0. Set X0 := span{Ax0}. It is easy to verify
that A(X0) ⊆ X0 and dimX0 = 1. �
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4.4. Norm–parallelism of nilpotent and projections.

In this section we investigate nilpotent and projections in the context of norm–
parallelism in locally uniformly convex spaces. First, we show that iterations of
nilpotent are not norm–parallel.

Theorem 4.14. Let X be a locally uniformly convex Banach space. Let A ∈
K(X ) such that Am−1 6= 0, Am = 0 for some m ∈ N. Then Ak ∦ Aj for every
1 ≤ k < j ≤ m.

Proof. Assume, contrary to our claim, that Ak ‖ Aj for some 1 ≤ k < j ≤ m.
Since A is compact, Ak, Aj are compact. It follows from Lemma 4.8 that, there
exist a sequence {xn} ⊂ SX , y ∈ SX and λ ∈ T such that

lim
n→∞

Ak

‖Ak‖
xn = y, lim

n→∞
λ

Aj

‖Aj‖
xn = y. (4.5)

Due to Aj−k is continuous, we get by (4.5) limn→∞Aj−k
(

Ak

‖Ak‖xn

)

= Aj−ky.

Hence

lim
n→∞

(

Aj

‖Ak‖
xn

)

= Aj−ky. (4.6)

Now the equality (4.6) becomes

lim
n→∞

(

Aj

‖Aj‖
xn

)

=
‖Ak‖

‖Aj‖
Aj−ky. (4.7)

By (4.5) and (4.7) we reach that ‖Ak‖
‖Aj‖A

j−ky = λy. We obtain Aj−ky = αy with

α := λ ‖Aj‖
‖Ak‖ . Therefore, A

m(j−k)y = αmy 6= 0, while Am(j−k) = 0, and we obtain a

contradiction. �

Now, we investigate whether projections may be norm–parallel.

Theorem 4.15. Let X be a locally uniformly convex Banach space. Let A,B ∈
B(X ) be operators such that A2 = A and B2 = B. Moreover, suppose that
dimA(X ) < ∞. If A ‖ B, then A(X ) ∩ B(X ) is a nontrivial subspace.

Proof. Since dimA(X ) < ∞, A ∈ K(X ). It follows from Lemma 4.8 that, there
exist a sequence λ ∈ T, {xn} ⊂ SX and y ∈ SX such that

lim
k→∞

A

‖A‖
xn = y, lim

k→∞
λ

B

‖B‖
xn = y. (4.8)

The operators A,B are continuous. Thus we get by (4.8)

lim
k→∞

A2

‖A‖
xn = Ay, lim

k→∞
λ
B2

‖B‖
xn = By. (4.9)

Since A2 = A, B2 = B, it follows from (4.9) that

lim
k→∞

A

‖A‖
xn = Ay, lim

k→∞
λ

B

‖B‖
xn = By. (4.10)

Combining (4.8) and (4.10) we get Ay = y = By. So, it yields y ∈ A(X )∩B(X ),
which means that span{y} ⊂ A(X ) ∩ B(X ). �



ORTHOGONALITY AND PARALLELISM OF OPERATORS ON BANACH SPACES 17

Corollary 4.16. Let X be a locally uniformly convex Banach space. Let A,B ∈
B(X ) be projections such that ‖A‖ = 1 and ‖B‖ = 1. Moreover, suppose that
dimA(X ) < ∞. Then the following conditions are equivalent:

(i) A ‖ B.
(ii) A(X ) ∩ B(X ) is a nontrivial subspace.

Proof. The implication (i)⇒(ii) holds by Theorem 4.15. We prove (ii)⇒(i). Fix
x ∈ A(X ) ∩ B(X ) ∩ SX . It follows that Ax = x and Bx = x. Thus

‖A‖+ ‖B‖ = 2 = ‖x+ x‖ = ‖Ax+Bx‖ ≤ ‖A+B‖ ≤ ‖A‖+ ‖B‖,

which completes the proof of this theorem. �

4.5. Norm–parallelism of compact operators.

In this section, we give some equivalence assertions about the norm–parallelism
of compact operators. Let 0 ≤ ε < 1. We say that a mapping U : X −→ Y is an
ε-isometry if

(1− ε)‖x‖ ≤ ‖Ux‖ ≤ (1 + ε)‖x‖ (x ∈ X ).

Theorem 4.17. Let X be a normed space and let A,B ∈ B(X ). Suppose that for
every ε > 0 there exist a normed space Y and a surjective ε-isometry U : X −→ Y
such that UAU−1 ‖ UBU−1 in B(Y). Then A ‖ B.

Proof. Fix ε > 0. By assumption, there exist a normed space Y and a surjective
ε-isometry U : X −→ Y such that UAU−1 ‖ UBU−1. Hence there exists λ ∈ T
such that

∥

∥UAU−1 + λUBU−1
∥

∥ = ‖UAU−1‖+ ‖UBU−1‖. (4.11)

For every C ∈ B(X ) we have

‖UCU−1y‖ ≤ ‖UC‖ ‖U−1y‖ ≤ ‖U‖ ‖C‖
‖y‖

1− ε
≤

1 + ε

1− ε
‖C‖ ‖y‖ (y ∈ Y)

which implies that

‖UCU−1‖ ≤
1 + ε

1− ε
‖C‖. (4.12)

On the other hand, we have

1− ε

1 + ε
‖Cx‖ =

1− ε

1 + ε
‖U−1

(

UCU−1
)

Ux‖

≤
1− ε

1 + ε
‖U−1

(

UCU−1
)

‖ ‖Ux‖

≤
1− ε

1 + ε
‖U−1‖ ‖UCU−1‖(1 + ε)‖x‖

≤
1− ε

1 + ε
×

1

1− ε
‖UCU−1‖(1 + ε)‖x‖ = ‖UCU−1‖ ‖x‖ (x ∈ X ),

whence
1− ε

1 + ε
‖C‖ ≤ ‖UCU−1‖. (4.13)
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From (4.12) and (4.13) we therefore get

1− ε

1 + ε
‖C‖ ≤ ‖UCU−1‖ ≤

1 + ε

1− ε
‖C‖. (4.14)

We have

‖A‖+ ‖B‖ ≥ ‖A+ λB‖

≥
1− ε

1 + ε
‖U(A+ λB)U−1‖

(

by (4.14) forC = A+ λB
)

=
1− ε

1 + ε

(

‖UAU−1‖+ ‖UBU−1‖
) (

by (4.11)
)

≥
1− ε

1 + ε

(

1− ε

1 + ε
‖A‖+

1− ε

1 + ε
‖B‖

)

(

by (4.14)
)

=

(

1− ε

1 + ε

)2

(‖A‖+ ‖B‖).

Thus

‖A‖+ ‖B‖ ≥ ‖A+ λB‖ ≥

(

1− ε

1 + ε

)2

(‖A‖+ ‖B‖). (4.15)

Letting ε → 0+ in (4.15), we obtain ‖A+ λB‖ = ‖A‖+ ‖B‖, hence A ‖ B. �

Proposition 4.18. Let X ,Y be normed space, A ∈ B(X ,Y) and x, y ∈ MA. If
Ax ‖ Ay, then x ‖ y.

Proof. Let Ax ‖ Ay. Hence there exists λ0 ∈ T such that ‖Ax + λ0Ay‖ =
‖Ax‖+ ‖Ay‖. Since x, y ∈ MA, we obtain ‖Ax+ λ0Ay‖ = 2‖A‖. Now, let x ∦ y.
Then 0 < ‖x+λy‖ < ‖x‖+‖y‖ = 2 for all λ ∈ T. In particular, 0 < ‖x+λ0y‖ < 2.
So, we have

‖A‖ ≥

∥

∥

∥

∥

A

(

x+ λ0y

‖x+ λ0y‖

)
∥

∥

∥

∥

=
1

‖x+ λ0y‖
‖Ax+ λ0Ay‖

=
2‖A‖

‖x+ λ0y‖
>

2‖A‖

2
= ‖A‖,

which is a contradiction. Thus x ‖ y. �

In the sequel, we show that the converse of Proposition 4.18 is also true if both
X ,Y are real smooth Banach spaces. To this end, let us quote a result from [26].

Lemma 4.19. [26, Theorem 3.1] Let X be a real smooth Banach space, A ∈ B(X )
and x ∈ MA. Then

A
(

{

z ∈ X ; x ⊥BJ z
}

)

⊆
{

w ∈ X ; Ax ⊥BJ w
}

.

We are now in a position to establish one of our main results.

Theorem 4.20. Let X be a real smooth Banach space, A ∈ B(X ) with ‖A‖ = 1
and x, y ∈ MA. Then the following statements are equivalent:
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(i) x ‖ y.
(ii) Ax ‖ Ay.

Proof. By Proposition 4.18, (ii) implies (i).
(i)⇒(ii) Let x ‖ y. By (1.5), there exists λ ∈ T such that x ⊥BJ

(

‖y‖x+λ‖x‖y
)

.

From x, y ∈ SX we deduce that x ⊥BJ

(

x+ λy
)

. Thus

A(x+ λy) ∈ A({z ∈ X : x ⊥BJ z}).

From Lemma 4.19 we therefore conclude that Ax ⊥BJ A(x+ λy). Thus Ax ⊥BJ

‖Ay‖Ax + λ‖Ax‖Ay, since ‖Ax‖ = ‖Ay‖ = 1. Again applying (1.5), we obtain
Ax ‖ Ay. �

Remark 4.21. Notice that the smoothness condition of Banach space in the above
theorem is essential. For example, let us consider the space R2 with the max–
norm. Consider the norm one operator A ∈ B(R2) defined by A(x, y) = 1

2
(x +

y, x − y). It is easily seen that (1,−1), (−1,−1) ∈ MA and (1,−1) ‖ (−1,−1).
However, we have A(1,−1) = (0, 1) ∦ (−1, 0) = A(−1,−1).

Because of any compact operator on a reflexive Banach space must attain its
norm, we have the following result as a consequence of Theorem 4.20.

Corollary 4.22. Let X be a real reflexive smooth Banach space and A ∈ K(X )
with ‖A‖ = 1. Then there exists a unit vector x ∈ X such that for any y ∈ MA,
the following statements are equivalent:

(i) x ‖ y.
(ii) Ax ‖ Ay.

Next, let A,B ∈ B(X ,Y). If x ∈ MA ∩ MB and Ax ‖ Bx, then there exists
λ ∈ T such that ‖Ax+ λBx‖ = ‖Ax‖+ ‖Bx‖. Hence

‖A‖+ ‖B‖ = ‖Ax‖+ ‖Bx‖ = ‖Ax+ λBx‖ ≤ ‖A+ λB‖ ≤ ‖A‖+ ‖B‖.

Thus ‖A + λB‖ = ‖A‖ + ‖B‖, and hence A ‖ B. There are examples in which
A ‖ B but not Ax ‖ Bx for any x ∈ MA ∩MB (see [35, Example 2.17]).

In a Hilbert space H and for A,B ∈ B(H), we [34, Crolloraly 4.2] proved that
A ‖ B if and only if there exists a sequence of unit vectors {ξn} in H such that

lim
n→∞

∣

∣〈Aξn, Bξn〉
∣

∣ = ‖A‖ ‖B‖.

It follows that if the Hilbert space H is finite dimensional, then A ‖ B if and only
if Ax ‖ Bx for some x ∈ MA ∩MB.

In the case when H is infinite dimensional, there are examples showing that
A ‖ B but there is no x ∈ MA ∩MB such that Ax ‖ Bx (see [35, Example 2.17]).
This indicates that for such a result to be true in an infinite dimensional Hilbert
space, we need to impose certain additional condition(s). In [35, Theorem 2.18]
it is proved that for A ∈ B(H), if SH0

= MA where H0 is a finite dimensional
subspace of H and sup{‖Az‖ : z ∈ H0

⊥, ‖z‖ = 1} < ‖A‖, then for any B ∈
B(H), A ‖ B if and only if there exists a vector x ∈ MA∩MB such that Ax ‖ Bx.

Furthermore, for A,B ∈ K(H) it is proved in [33, Theorem 2.10] that A ‖ B ⇔
Ax ‖ Bx for some x ∈ MA ∩ MB. Notice that the condition of compactness is
essential (see [33, Example 2.7]).



20 T. BOTTAZZI, C. CONDE, M.S. MOSLEHIAN, P. WÓJCIK AND A. ZAMANI

The following auxiliary result is needed in our next theorem.

Lemma 4.23. [31, Theorem 3.1] Let X ,Y be real reflexive Banach spaces, Y be
smooth and strictly convex and A,B ∈ K(X ,Y). Let either MA be connected or
MA = {−u,+u} for some unit vector u ∈ X . If A ⊥BJ B, then there exists a
vector x ∈ MA such that Ax ⊥BJ Bx.

Theorem 4.24. Let X ,Y be real reflexive Banach spaces, Y be smooth and
strictly convex and A,B ∈ K(X ,Y). Let either MA be connected or MA =
{−u,+u} for some unit vector u ∈ X . Then the following statements are equiv-
alent:

(i) A ‖ B.
(ii) There exists a vector x ∈ MA ∩MB such that Ax ‖ Bx.

In addition, if x satisfying (ii), then Ax
‖A‖ = ± Bx

‖B‖ .

Proof. Let A ‖ B. By (1.5), there exists λ ∈ T such that A ⊥BJ

(

‖B‖A+λ‖A‖B
)

.
Noting that since X is a reflexive Banach space and A ∈ K(X ,Y) we have MA 6=
∅. It follows from Lemma 4.23 that there exists a vector x ∈ MA such that

Ax ⊥BJ

(

‖B‖Ax+ λ‖A‖Bx
)

. Hence,
∥

∥

∥
Ax+ µ

(

‖B‖Ax+ λ‖A‖Bx
)

∥

∥

∥
≥ ‖Ax‖ for

all µ ∈ R. Let µ = − 1
‖B‖ . Then

∥

∥

∥
Ax−

1

‖B‖

(

‖B‖Ax+ λ‖A‖Bx
)

∥

∥

∥
≥ ‖Ax‖.

Thus ‖A‖‖Bx‖ ≥ ‖B‖‖Ax‖. Since ‖Ax‖ = ‖A‖, we get ‖Bx‖ ≥ ‖B‖. So
‖B‖ = ‖Bx‖ and hence x ∈ MB. Since Ax ⊥BJ

(

‖B‖Ax + λ‖A‖Bx
)

, we get

Ax ⊥BJ

(

‖Bx‖Ax + λ‖Ax‖Bx
)

. Again applying (1.5), we obtain Ax ‖ Bx.
Then ‖Ax+αBx‖ = ‖Ax‖+‖Bx‖ for some α ∈ T, which by the strict convexity

of Y we get Ax = ±cBx with c > 0. Consequently c = ‖Ax‖
‖Bx‖ = ‖A‖

‖B‖ . Thus
Ax
‖A‖ = ±cBx

c‖B‖ = ± Bx
‖B‖ .

The converse is obvious. �

Remark 4.25. If H is a real finite-dimensional Hilbert space, then B(H) = K(H).
It is well known that MA 6= ∅ for every A ∈ K(H). Also, it is easy to see that
either MA is connected or MA = {−u,+u} for some unit vector u ∈ X . So, as
an immediate consequence of Theorem 4.24, we get Theorem 2.13 of [35].

Corollary 4.26. Let X ,Y be real reflexive Banach spaces. Let Y be smooth and
strictly convex and there exist [·, ·] : Y × Y → R a semi inner product generating
its norm. Let A,B ∈ K(X ,Y) and MA be either connected or MA = {−u,+u}
for some unit vector u ∈ X . If A ‖ B, then

‖B‖ = sup
{

|[Bx, y]| : x ∈ SX , y ∈ SY , Ax ‖ y
}

.

Proof. Obviously, we have

sup
{

|[Bx, y]| : x ∈ SX , y ∈ SY , Ax ‖ y
}

≤ ‖B‖.

Due to A ‖ B, by Theorem 4.24, there exists a vector x0 ∈ MA ∩MB such that
Ax0

‖A‖ = ±Bx0

‖B‖ . Put x := x0 and y := Ax0

‖Ax0‖ . Then x ∈ SX , y ∈ SY and Ax ‖ y. We
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have

∣

∣[Bx, y]
∣

∣ =
∣

∣

∣

[

Bx0,
Ax0

‖Ax0‖

]
∣

∣

∣
=
∣

∣

∣

[

Bx0,±
Bx0

‖B‖

]
∣

∣

∣
=

‖Bx0‖
2

‖B‖
= ‖B‖.

Thus the supremum is attained. �

Since every finite dimensional normed space is reflexive on which every linear
operator is compact, as a consequence of Theorem 4.24, we have the following
result.

Corollary 4.27. Let X be a finite dimensional real normed space and Y be any
real normed space. Assume A,B ∈ B(X ,Y) and MA = SX . Then the following
statements are equivalent:

(i) A ‖ B.
(ii) There exists x ∈ MB such that Ax ‖ Bx.
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