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We study the existence and characterization properties of compact
Hermitian operators C on a Hilbert space H such that

‖C‖� ‖C + D‖, for all D ∈ D
(
K(H)h)

or equivalently

‖C‖ = min
D∈D(K(H)h)

‖C + D‖ = dist
(
C,D

(
K(H)h))

where D(K(H)h) denotes the space of compact self-adjoint diag-
onal operators in a fixed base of H and ‖.‖ is the operator norm.
We also exhibit a positive trace class operator that fails to attain
the minimum in a compact diagonal.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a Hilbert space, K(H) be the algebra of compact operators and D(K(H)h) the subalgebra
of self-adjoint diagonal compact operators (with respect to a fixed orthonormal base). In this paper
we study the existence and describe Hermitian compact operators C such that

‖C‖� ‖C + D‖, for all D ∈ D
(
K(H)h),
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or equivalently

‖C‖ = dist
(
C,D

(
K(H)h)), (1.1)

where ‖.‖ denotes the usual operator norm. These operators C will be called minimal. Our interest
in these minimal operators comes from the study of minimal length curves of the orbit manifold of a
self-adjoint compact operator A by a particular unitary group (see [1]), that is

OA = {
u Au∗: u unitary in B(H) and u − 1 ∈ K(H)

}
.

The tangent space at any b ∈OA is

Tb(OA) = {
zb − bz: z ∈ K(H)ah}.

Where the suffix ah refers to the anti-Hermitian operators (analogously, the suffix h refers to Hermi-
tian operators). If x ∈ Tb(OA), the existence of a (not necessarily unique) minimal element z0 such
that

‖x‖ = ‖z0‖ = inf
{‖z‖: z ∈ K(H)ah, zb − bz = x

}
allows the description of minimal length curves of the manifold by the parametrization

γ (t) = etz0 be−tz0 , t ∈ [−1,1].
These z0 can be described as i(C + D), with C ∈ K(H)h and D a real diagonal operator in the or-
thonormal base of eigenvectors of A.

If we consider a von Neumann algebra A and a von Neumann subalgebra, named B, of A, it has
been proved in [5] that for each a ∈ A there always exists a minimal element b0 in B. It means that
‖a + b0‖ � ‖a + b‖, for all b ∈ B. For example, if Mh

n(C) is the algebra of Hermitian matrices of n × n
and D(Mh

n(C)) is the subalgebra of diagonal Hermitian matrices (or diagonal real matrices), it is easy
to prove that, for every M ∈ Mh

n(C) there always exists a minimal element D ∈D(Mh
n(C)).

However, in the case of K(H)h , which is only a real Banach algebra, the existence of a best ap-
proximant in the general case is not guaranteed. In the particular case that C ∈K(H)h has finite rank,
it was proved in Proposition 5.1 in [1] that there exists a minimal compact diagonal element.

The results we present in this paper are divided in two parts. In the first one we describe a
particular case of minimal operators that allow us to prove there is not always a minimal diagonal
compact operator. In the second part we present properties and characterizations of minimal compact
operators in general.

2. Preliminaries and notation

Let H be a Hilbert space where we consider a fixed orthonormal base {ei}i∈I . Note that since C in
(1.1) is compact, then only a countable subset {ein }n∈N ⊂ {ei}i∈I satisfies C(ein ) �= 0. Therefore, to find
infD∈D(K(H)h) ‖C − D‖, we can restrict the D ∈ D(K(H)h) to those that are diagonal with respect to
this countable subset of the basis (and zero elsewhere). Then, in order to describe minimal compact
operators, we can suppose without loss of generality that the Hilbert space H is separable.

We denote by 〈 , 〉 the inner product of H and with ‖x‖ = 〈x, x〉1/2 the norm for each x ∈ H. We
designate with K(H), the two-sided closed ideal of compact operators on H, with B1(H), the space
of trace class operators, and with B(H) the set of bounded operators. As usual ‖T ‖ denotes the
operator norm of T ∈ B(H) and ‖L‖1 = tr(|L|) = tr[(L∗L)1/2], the trace norm of L ∈ B1(H). It should
cause no confusion the use of the same notation ‖.‖ to refer to the operator norm or the norm in H,
it should be clear from the context.

If A is any of the previous sets, we denote with D(A) the set of diagonal operators, that is

D(A) = {
T ∈ A: 〈T ei, e j〉 = 0, for all i �= j

}
,

where {ek}∞k=1 is a fixed orthonormal base of H. We consider an operator T ∈ B(H) like an infinite
matrix defined for each i, j ∈ N as Tij = 〈T ei, e j〉. In this sense, the jth-column and ith-row of T are
the vectors in �2 given by c j(T ) = (T1 j, T2 j, . . .) and f j(T ) = (Ti1, Ti2, . . .), respectively.
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Let L ∈ B(H)h , we denote the positive and negative parts of L as:

L+ = |L| + L

2
and L− = |L| − L

2
,

respectively.
We use σ(T ) and R(T ) to denote the spectrum and range of T ∈ B(H)h , respectively.
We define Φ : B(H) → D(B(H)), Φ(X) = Diag(X), which essentially takes the main diagonal (i.e.,

the elements of the form 〈Xei, ei〉i∈N) of an operator X and builds a diagonal operator in the chosen
fixed base of H. For a given sequence (dn)n∈N we denote with Diag((dn)n∈N) the diagonal (infinite)
matrix with (dn)n∈N in its diagonal and 0 elsewhere.

We define the space K(H)h/D(K(H)h) with the usual quotient norm∥∥[C]∥∥ = inf
D∈D(K(H)h)

‖C + D‖ = dist
(
C,D

(
K(H)h))

for each class [C] = {C + D: D ∈D(K(H)h)}.
Given an operator C ∈K(H)h , if there exists an operator D1 compact and diagonal such that

‖C + D1‖ = dist
(
C,D

(
K(H)h)),

we say that D1 is a best approximant of C in D(K(H)h). In other terms, the operator C + D1 verifies
the following inequality

‖C + D1‖� ‖C + D‖
for all D ∈D(K(H)h). In this sense, we call C + D1 a minimal operator or similarly we say that D1 is
minimal for C .

3. The existence problem of the best approximant

Some examples of compact Hermitian operators that possess a closest compact diagonal are:
i) those constructed with Hermitian square matrices in their main diagonal, ii) tridiagonal operators
with zero diagonal, and iii) finite rank compact operators (see [1] for a proof).

In the rest of this section we study some examples of compact Hermitian operators with a unique
best diagonal approximant. Then, we use this example to show an operator which has no best com-
pact diagonal approximant. We use frequently the fact that any bounded operator T can be described
uniquely as an infinite matrix with the notation Tij that we introduced in Section 2 using the fixed
base.

The following statement is about a set of compact symmetric operators (L = Lt ), which has the
following property: every operator has a column (or row) such that every different column (or row)
is orthogonal to it (considering L as an infinite matrix). This result has its origins in the finite dimen-
sional result obtained in [6].

Theorem 1. Let T ∈K(H)h be described as an infinite matrix by (Tij)i, j∈N . Suppose that T satisfies:

(1) Tij ∈ R for each i, j ∈N,
(2) there exists i0 ∈ N satisfying Ti0 i0 = 0, with Ti0n �= 0, for all n �= i0 ,
(3) if T [i0] is the operator T with zero in its i0th-column and i0th-row then∥∥ci0(T )

∥∥ �
∥∥T [i0]∥∥

(where ‖ci0(T )‖ denotes the Hilbert norm of the i0th-column of T ), and
(4) if the Tnn’s satisfy that, for each n ∈N, n �= i0:

Tnn = −〈ci0(T ), cn(T )〉
Ti0n

.
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Then T is minimal, that is

‖T ‖ = ∥∥ci0(T )
∥∥ = inf

D∈D(K(H)h)
‖T + D‖

and moreover, D = Diag((Tnn)n∈N) is the unique bounded minimal diagonal operator for T .

Proof. Without loss of generality we can suppose that T is a compact operator with real entries and
i0 = 1, therefore it has the matrix form given by

T =

⎛
⎜⎜⎜⎜⎝

0 T12 T13 T14 · · ·
T12 T22 T23 T24 · · ·
T13 T23 T33 T34 · · ·
T14 T24 T34 T44 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ .

The hypothesis in this case are

• i0 = 1 with T1n �= 0, ∀n ∈ N− {1}.

• ‖c1(T )‖ �

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎝

0 0 0 0 · · ·
0 T22 T23 T24 · · ·
0 T23 T33 T34 · · ·
0 T24 T34 T44 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
. . .

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
=T [1]

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= ‖T [1]‖.

• Each Tnn fulfills:

Tnn = −〈c1(T ), cn(T )〉
T1n

for every n ∈N− {1}.

There are some remarks to be made:

(1) First note that for every i ∈N

|Tii| =
∣∣〈T [1]ei, ei

〉∣∣ � ∥∥T [1]ei
∥∥‖ei‖ �

∥∥T [1]∥∥�
∥∥c1(T )

∥∥ < ∞
namely, (Tii)i∈N is a bounded sequence (each Tii is a diagonal element of T [1] in the fixed base).

(2) A direct computation proves that ‖c1(T )‖ and −‖c1(T )‖ are eigenvalues of T with

v+ = 1√
2‖c1(T )‖

(∥∥c1(T )
∥∥e1 + c1(T )

)
and v− = 1√

2‖c1(T )‖
(∥∥c1(T )

∥∥e1 − c1(T )
)
,

which are eigenvectors of ‖c1(T )‖ and −‖c1(T )‖, respectively. Let us consider the space V =
Gen{v+, v−}:
• If w ∈ V , then ‖T w‖2 = ‖c1(T )‖2‖w‖2.
• If y ∈ V ⊥ , then ‖T y‖ = ‖T [1] y‖� ‖T [1]‖‖y‖.
Then, for every x = w + y ∈H, with w ∈ V and y ∈ V ⊥:∥∥T (w + y)

∥∥2 = ‖T w‖2 + ‖T y‖2 �
∥∥c1(T )

∥∥2‖w‖2 + ∥∥T [1]∥∥2‖y1‖2 �
∥∥c1(T )

∥∥2‖x‖2.

Therefore,

‖T ‖ = ∥∥c1(T )
∥∥.

(3) Let D ′ ∈ D(K(H)h) and define ( T + D ′︸ ︷︷ ︸
=T ′

)ei = T ′(ei) = ci(T ′) for each i ∈ N, then the following

properties are satisfied:
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• If D ′
11 �= 0 then∥∥T ′(e1)

∥∥2 = ∥∥c1
(
T ′)∥∥2 = D ′

11 + ∥∥c1(T )
∥∥2

>
∥∥c1(T )

∥∥2 = ‖T ‖2 ⇒ ∥∥T ′∥∥ > ‖T ‖.
Therefore, we can assume that if T + D ′ is minimal then D ′

11 = 0.
• Now suppose that there exists i ∈ N, i > 1, such that D ′ does not have its ith-column orthogo-

nal to the first one, that is:〈
T ′e1, T ′ei

〉 = 〈
c1

(
T ′), ci

(
T ′)〉 = a �= 0.

Then,

T ′
(

c1(T )

‖c1(T )‖
)

=
(∥∥c1(T )

∥∥,
a2

‖c1(T )‖ , . . . ,
ai

‖c1(T )‖ , . . .

)
⇒ ∥∥T ′(c1(T )

)∥∥2
>

∥∥c1(T )
∥∥2 = ‖T ‖.

Hence, ‖T ′‖ > ‖T ‖.
Therefore, D = Diag((Tnn)n∈N) is the unique minimal diagonal for T and it is bounded. �

Note that the minimal diagonal obtained in Theorem 1 is clearly bounded but we do not know if
it is compact. An interesting question is if there exist an operator T which fulfills the hypothesis of
Theorem 1 and it has an only minimal bounded diagonal non-compact. To answer this question we
analyzed several examples, we show the most relevant among them.

Let γ ∈ R be such that |γ | < 1 and take an operator T ∈ B(H)h defined as (Tij)i, j∈N where

Tij =
{0 if i = j,

γ max{i, j}−2 if i �= j and j, i �= 1,

γ |i− j| if j = 1 or i = 1.

Writing T as an infinite matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 γ γ 2 γ 3 γ 4 · · ·
γ 0 γ γ 2 γ 3 · · ·
γ 2 γ 0 γ 2 γ 3 · · ·
γ 3 γ 2 γ 2 0 γ 3 · · ·
γ 4 γ 3 γ 3 γ 3 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

T is symmetric and cn(T ) is the nth-column. Since, (T ∗T )nn = 〈 fn(T ), cn(T )〉 = 〈cn(T ), cn(T )〉 for each
n ∈N, then

• (T ∗T )11 = 〈c1(T ), c1(T )〉 = 0 + γ γ + γ 2γ 2 + · · · = ∑∞
k=1 γ 2k = γ 2

1−γ 2 ,

• (T ∗T )22 = 〈c2(T ), c2(T )〉 = γ γ + 0 + γ γ + γ 2γ 2 + · · · = γ 2 + ∑∞
k=1 γ 2k = γ 2 + γ 2

1−γ 2 ,

• and for any n � 3:(
T ∗T

)
nn = 〈

cn(T ), cn(T )
〉

= γ n−1γ n−1 + γ n−2γ n−2 + · · · + γ n−2γ n−2︸ ︷︷ ︸
n−2 times

+ 0

+ γ n−1γ n−1 + γ nγ n + γ n+1γ n+1 + γ n+2γ n+2 + · · ·

= γ 2(n−1) + (n − 2)γ 2(n−2) +
∞∑

k=n−1

γ 2k

= γ 2(n−1) + (n − 2)γ 2(n−2) + γ −2+2n

1 − γ 2
< ∞.
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Therefore,

tr
(
T ∗T

) =
∞∑

n=1

(
T ∗T

)
nn

= γ 2

1 − γ 2
+ γ 2 + γ 2

1 − γ 2
+

∞∑
n=3

[
γ 2(n−1) + (n − 2)γ 2(n−2) + γ 2n−2

1 − γ 2

]

= γ 2

1 − γ 2
+ γ 2 + γ 2

1 − γ 2
+ 1

1 − γ 2
+ −γ 2 + 2γ 4

γ 4(1 − γ 2)2
+ 1

(1 − γ 2)2

= −1 + 4γ 2 + 2γ 4 − 4γ 6 + γ 8

γ 2(−1 + γ 2)2
< ∞.

Then, T is a Hilbert–Schmidt operator. Consider a diagonal operator D , given by D = Diag((dn)n∈N),
with the sequence (dn)n∈N ⊂ R such that

(1) d1 = 0.
(2) 〈c1(T ), cn(T + D)〉 = 0, for every n ∈N, n > 1.

Indeed, for every n � 2 each dn is uniquely determined by

dn = −1 − γ n−2

1 − γ
− γ n

1 − γ 2
.

We can also note that dn → 1
γ −1 when n → ∞, so the diagonal operator D = Diag((dn)n∈N) is

bounded but non-compact.
On the other hand, if we consider T [1] , the operator given by

T [1] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
0 0 γ γ 2 γ 3 · · ·
0 γ 0 γ 2 γ 3 · · ·
0 γ 2 γ 2 0 γ 3 · · ·
0 γ 3 γ 3 γ 3 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

then T [1] is also a Hilbert–Schmidt operator. Then T [1] + D ∈ B(H). Now consider the operator Tr ,
given by

Tr =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 rγ rγ 2 rγ 3 rγ 4 · · ·
rγ 0 γ γ 2 γ 3 · · ·
rγ 2 γ 0 γ 2 γ 3 · · ·
rγ 3 γ 2 γ 2 0 γ 3 · · ·
rγ 4 γ 3 γ 3 γ 3 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ (3.1)

with r = ‖T [1]+D‖
‖c1(T )‖ . Then, we claim that the following operator

Tr + D =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 rγ rγ 2 rγ 3 rγ 4 · · ·
rγ d2 γ γ 2 γ 3 · · ·
rγ 2 γ d3 γ 2 γ 3 · · ·
rγ 3 γ 2 γ 2 d4 γ 3 · · ·
rγ 4 γ 3 γ 3 γ 3 d5 · · ·
.. .. .. .. .. . . .

⎞
⎟⎟⎟⎟⎟⎟⎠
. . . . .
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is minimal and unique, which means:∥∥[Tr]
∥∥ = inf

D ′∈D(Bh(H))

∥∥T + D ′∥∥ = inf
D ′∈D(K(H)h)

∥∥T + D ′∥∥ = ‖Tr + D‖.

This is true because Tr is an operator which clearly satisfies the hypothesis of Theorem 1. It follows
from the non-compacity of D that there is no best compact diagonal approximation of Tr .

The operator Tr is also a positive trace class operator. In effect, if we consider the lower triangular
operator Ca ∈ B(H), given by (Ca)i j = ai , for i � j, and take a = √

γ , then

C∗√
γ C√

γ = 1

1 − γ

⎛
⎜⎜⎜⎜⎝

γ γ 2 γ 3 γ 4 γ 5 · · ·
γ 2 γ 2 γ 3 γ 4 γ 5 · · ·
γ 3 γ 3 γ 3 γ 4 γ 5 · · ·
γ 4 γ 4 γ 4 γ 4 γ 5 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ = 1

1 − γ
Q .

Therefore,

tr
(|Q |) = (1 − γ ) tr

(∣∣C∗√
γ C√

γ

∣∣) = (1 − γ ) tr
(
C∗√

γ C√
γ

) = tr(Q ),

which shows that Q ∈ B1(H). On the other hand, the operator

R =

⎛
⎜⎜⎜⎜⎝

0 rγ rγ 2 rγ 3 · · ·
rγ 0 0 0 · · ·
rγ 2 0 0 0 · · ·
rγ 3 0 0 0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠

has finite rank, thus
(

0 ···
... Q

)
+ R ∈ B1(H). But also

(
0 ···
... Q

)
+ R − Diag(Q ) = Tr , which is equivalent

to say that
(

0 ···
... Q

)
+ R is in the same class that Tr . As Diag(Q ) ∈ B1(H), it follows that Tr ∈ B1(H).

Moreover, since Q and R are positive then Tr is also positive.

Remark 2 (About the implications of the uniqueness condition on the existence of minimal diagonal oper-
ators). For a given Hermitian compact operator C the existence of a unique bounded real diagonal
operator D0 minimal for C does not imply that D0 is not compact. On the other hand, if there exist
infinite bounded real diagonal operators that are minimal for C , this does not imply that there exists
a compact minimal diagonal.

The next examples of operators show that the existence of a unique (respectively non-unique)
minimal diagonal does not necessarily imply that there does not exist (respectively that there exists)
a minimal compact diagonal.

(1) Let L ∈D(K(H)h), L �= 0, then −L is the only minimal diagonal compact operator. In this case, we
can observe that there is uniqueness for the minimal, but the best approximant is also compact.

(2) Let us consider the example Tr defined in (3.1) and the block operator S =
(

Sn 0
0 Tr

)
, where

Sn ∈ Mh
n(C) is a matrix whose quotient norm is ‖[Tr]‖ and has infinite minimal diagonals of

n × n (consider matrices like those in [3,4] or [6]). Then, all minimal diagonal bounded opera-

tors for S are of the form D ′ =
(

Dn 0
0 D

)
, with any of the infinite Dn minimals for Sn and D the

unique minimal bounded diagonal operator for Tr . Thus, none of these D ′ is compact. This case
shows that if uniqueness of a minimal diagonal does not hold this does not necessarily imply the
existence of a minimal compact diagonal operator.
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4. A characterization of minimal compact operators

In the previous section we showed an example of a compact operator Tr that has no compact di-
agonal best approximant. The main property that allowed us to prove the non-existence of a minimal
compact diagonal is the uniqueness of the best approximant for Tr .

Nevertheless, there are a lot of compact operators which have at least one best compact diagonal
approximation, for example the operators of finite rank. The spirit of this part follows the main ideas
in [2]. The main purpose of this subsection is to study properties and equivalences that characterize
minimal compact operators.

The next two propositions are closely related with the Hahn–Banach theorem for Banach spaces
and they relate the space K(H)h with B1(H)h .

Proposition 3. Let C ∈K(H)h and consider the set

N = {
Y ∈ B1(H)h: ‖Y ‖1 = 1, tr(Y D) = 0, ∀D ∈ D

(
K(H)h)}.

Then, there exists Y0 ∈N such that∥∥[C]∥∥ = inf
D∈D(K(H)h)

‖C + D‖ = tr(Y0C). (4.1)

Proof. It is an immediate consequence from the Hahn–Banach theorem that since D(K(H)h) is a
closed subspace of K(H)h and C ∈ K(H)h , then there exists a functional ρ : K(H)h → R such that
‖ρ‖ = 1, ρ(D) = 0, ∀D ∈D(K(H)h), and

ρ(C) = inf
D∈D(K(H)h)

‖C + D‖ = dist
(
C,D

(
K(H)h)).

But, since any functional ρ can be written as ρ(.) = tr(Y0.), with Y0 ∈ B1(H), the result follows. �
Proposition 4 (Banach duality formula). Let C ∈K(H)h, then

inf
D∈D(K(H))

‖C + D‖ = max
Y ∈N

∣∣tr(C Y )
∣∣. (4.2)

Proof. Let C ∈K(H)h . By Proposition 3, there exists Y0 ∈N such that

inf
D∈D(K(H)h)

‖C + D‖ = tr(Y0C).

Then

inf
D∈D(K(H)h)

‖C + D‖ = tr(Y0C) � max
Y ∈N

∣∣tr(C Y )
∣∣ = max

Y ∈N
∣∣tr((C + D)Y

)∣∣� ‖Y ‖1︸ ︷︷ ︸
=1

‖C + D‖,

for any D ∈D(K(H)h). Therefore, the equality (4.2) can be proved as a consequence of this fact. �
Note that if Y ∈ B1(H) is such that tr(Y D) = 0 for every D ∈ D(K(H)h) then tr(Y D) = 0 for

every D ∈ D(B(H)h). Moreover, it is easy to prove that if tr(Y D) = 0 for every D ∈ D(B(H)h), then
Diag(Y ) = 0.

It is apparent that

inf
D∈D(B(H)h)

‖C + D‖� inf
D∈D(K(H)h)

‖C + D‖.

Observe that there always exists D0 ∈ D(B(H)h) such that ‖C + D0‖ = infD∈D(B(H))h ‖C + D‖, since
B(H) is a von Neumann algebra and D(B(H)) is a von Neumann subalgebra of B(H) (see [5]).

With the above properties we can prove the reverse inequality, as we show in the following propo-
sition.
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Proposition 5. Let C ∈K(H)h, then

inf
D∈D(B(H)h)

‖C + D‖ = inf
D∈D(K(H)h)

‖C + D‖.

Proof. Let D0 a minimal bounded diagonal operator such that

inf
D∈D(B(H))h

‖C + D‖ = ‖C + D0‖.

Then, using Proposition 3, there exists Y0 ∈ B1(H), with ‖Y0‖1 = 1 such that

inf
D∈D(K(H))h

‖C + D‖ = ∣∣tr(Y0C)
∣∣ = ∣∣tr(Y0(C + D0)

)∣∣ � ‖C + D0‖

which completes the proof. �
A natural fact that has been proved for minimal Hermitian matrices is a balanced spectrum prop-

erty: if M ∈ Mh
n(C) and M is minimal then ‖M‖ and −‖M‖ are in the spectrum of M. This property

holds for minimal compact operators.

Proposition 6 (Balanced spectrum property). Let C ∈ K(H)h, C �= 0. Suppose that there exists D1 ∈
D(K(H)h) such that C + D1 is minimal, then

±‖C + D1‖ ∈ σ(C + D1).

Proof. The proof is a routine application of functional calculus to the Hermitian operator C + D1. �
Theorem 7. Let C ∈ K(H)h and D1 ∈ D(K(H)h). Consider E+ and E− , the spectral projections of the eigen-
values λmax(C + D1) and λmin(C + D1), respectively. The following statements are equivalent:

(1) C + D1 is minimal.
(2) There exists X ∈ B1(H)h, X �= 0, such that

• 〈Xei, ei〉 = 0, ∀i ∈N;
• | tr(X(C + D1))| = ‖C + D1‖‖X‖1;
• E+ X+ = X+ , E− X− = X− .

(3) λmin(C + D1) + λmax(C + D1) = 0 and for each D ∈ D(K(H)h) there exist y ∈ R(E+), z ∈ R(E−) such
that:
• ‖y‖ = ‖z‖ = 1;
• 〈D y, y〉� 〈Dz, z〉.

Proof. (2) ⇒ (1). Let C ∈ K(H)h and D1 ∈ D(K(H)h). If there exists X ∈ B1(H)h which fulfills the
properties in (2), then:

‖C + D1‖ = tr(X(C + D1))

‖X‖1
= tr

(
X

‖X‖1
C

)
� max

Y ∈N
∣∣tr(Y C)

∣∣ = inf
D∈D(K(H)h)

‖C + D‖,

where the last equality holds for the Banach duality formula (see Proposition 4). Then, C + D1 is
minimal.

(1) ⇒ (2). Without loss of generality, we can suppose that ‖C + D1‖ = 1. The proof of this part
follows the same techniques used in Theorem 2 in [2] for matrices and we include it for the sake of
completeness. The Banach duality formula implies that there exists X ∈ B1(H)h such that

〈Xei, ei〉 = 0, ∀i ∈ N, ‖X‖1 = 1, tr
(

X(C + D1)
) = tr(XC) = 1.

Let us prove that X(C + D1) = (C + D1)X . Since C + D1 is minimal Proposition 6 implies that −1,1 ∈
σ(C + D1). Consider the spectral projections E+ , E− and E3 = I − E+ − E− . The operators C + D1 and



T. Bottazzi, A. Varela / Linear Algebra and its Applications 439 (2013) 3044–3056 3053
X can be written matricially, in terms of the orthogonal decomposition H = R(E+) ⊕ R(E−) ⊕ R(E3),
as

C + D1 =
( I 0 0

0 −I 0
0 0 (C + D1)3,3

)
and X =

( X1,1 X1,2 X1,3
X2,1 X2,2 X2,3
X3,1 X3,2 X3,3

)
.

It is enough to prove that X1,2 = X1,3 = X2,3 = X3,3 = 0. To this end, if we consider Theorem 1.19
in [8], the following inequalities hold∥∥∥∥

(
X1,1 X1,2
X2,1 X2,2

)∥∥∥∥
1
+ ‖X3,3‖1 � ‖X‖1

and

‖X1,1‖1 + ‖X2,2‖1 �
∥∥∥∥
(

X1,1 X1,2
X2,1 X2,2

)∥∥∥∥
1
.

Suppose that ‖X3,3‖1 �= 0, then

1 = tr
(

X(C + D1)
) = tr(X1,1) − tr(X2,2) + tr

(
X3,3(C + D1)3,3

)
< ‖X1,1‖1 + ‖X2,2‖1 + ‖X3,3‖1 �

∥∥∥∥
(

X1,1 X1,2
X2,1 X2,2

)∥∥∥∥
1
+ ‖X3,3‖1 � ‖X‖1 � 1,

which is a contradiction. Then, X3,3 = 0.
It also follows that

tr(X1,1) = ‖X1,1‖1

tr(−X2,2) = ‖−X2,2‖1

}
⇒ X1,1 � 0 ∧ −X2,2 � 0.

On the other hand,

1 = tr
(

X(C + D1)
) = ‖X1,1‖1 + ‖−X2,2‖1 �

∥∥X(C + D1)
∥∥

1 � ‖X‖1‖C + D1‖� 1.

Therefore,

tr
(

X(C + D1)
) = ∥∥X(C + D1)

∥∥
1.

Then X(C + D1) � 0, which implies that{
X3,1(C + D1)3,3 = X∗

1,3(C + D1)3,3 = X3,1 ⇔ X3,1 = X∗
1,3 = 0,

X3,2(C + D1)3,3 = X∗
2,3(C + D1)3,3 = X3,2 ⇔ X3,2 = X∗

2,3 = 0.

Analogously, we can deduce that

tr

(
X1,1 X1,2

−X2,1 −X2,2

)
=

∥∥∥∥
(

X1,1 X1,2
−X2,1 −X2,2

)∥∥∥∥
1
.

Then
(

X1,1 X1,2
−X2,1 −X2,2

)
� 0 and −X2,1 = X∗

1,2 = X2,1 = 0. Therefore,

X =
( X1,1 0 0

0 X2,2 0
0 0 0

)

and this operator commutes with C + D1. Also,

X+ = E+ X1,1 E+ �⇒ E+ X+ = X+ and X− = E− X2,3 E− �⇒ E− X− = X−.

(2) ⇒ (3). Let X ∈ B1(H)h , X �= 0 such that Diag(X) = 0, tr(C X) = ‖X‖1 and E+ X+ = X+ ,
E− X− = X− . Let D ∈D(K(H)h) and define numbers m and M as



3054 T. Bottazzi, A. Varela / Linear Algebra and its Applications 439 (2013) 3044–3056
m = min
y∈R(E+)

〈D y, y〉
‖y‖2

, M = max
z∈R(E−)

〈Dz, z〉
‖z‖2

. (4.3)

Observe that dim(R(E+)), dim(R(E−)) < ∞, so the minimum and maximum, respectively, are al-
ways attained. We claim that

tr

(
X+

‖X+‖1
D

)
� m. (4.4)

In order to prove it observe that X+ = E+ X+ and note that

tr

(
X+

‖X+‖1
D

)
= tr

(
E+ X+E+
‖X+‖1

D

)
= tr

(
X+

‖X+‖1
E+D E+

)
.

Therefore, inequality (4.4) is equivalent to

tr

[
X+

‖X+‖1
(E+D E+ − mE+)

]
� 0,

since X+
‖X+‖1

� 0. Then, if we prove that E+D E+ − mE+ � 0 we obtain (4.4). Let h ∈H:

〈E+D E+h,h〉 = 〈D E+h, E+h〉 = 〈D y, y〉 � m‖y‖2,

with E+h = y ∈ R(E+). Then, 〈D y, y〉︸ ︷︷ ︸
<∞

−m〈y, y〉︸ ︷︷ ︸
<∞

� 0, for all y ∈ R(E+). Finally, since y = E+h, we have

〈
(D E+ − mE+)h, E+h

〉
� 0 ⇔ 〈

(E+D E+ − mE+)h,h
〉
� 0.

Analogously, it can be proved that tr( X−
‖X−‖1

D) � M .

On the other hand, the condition Diag(X) = 0 with X �= 0 forces that Diag(X+) = Diag(X−) �= 0,
and since X+, X− � 0 we have∥∥X+∥∥

1 = ∥∥Diag
(

X+)∥∥
1 = ∥∥Diag

(
X−)∥∥

1 = ∥∥X−∥∥
1

and

tr
(

X+D
) = tr

(
X−D

)
.

Therefore, there exist y0 ∈ R(E+) and z0 ∈ R(E−) such that ‖y0‖ = ‖z0‖ = 1 and

〈D y0, y0〉 = m � tr

(
X+

‖X+‖1
D

)
= tr

(
X−

‖X−‖1
D

)
� M = 〈Dz0, z0〉.

(3) ⇒ (2). For this part we follow the main ideas used in the proof of Theorem 2 in [2]: take the
function Φ(X) = Diag(X) defined in Section 2 and the following sets

A = {
Y ∈ B1(H)h: E+Y = Y � 0, tr(Y ) = 1

}
and

B = {
Z ∈ B1(H)h: E− Z = Z � 0, tr(Z) = 1

}
.

Since dim(R(E+)) < ∞ (and dim(R(E−)) < ∞), every Y ∈ A (and every Z ∈ B) is a Hermitian opera-
tor between finite fixed dimensional spaces. Then, all norms restricted to those spaces are equivalent.
Thus, we can consider that Φ(A) and Φ(B) are compact subsets of �2(R) for every norm (and of
course, they are convex also).

Assume the non-existence of X satisfying (2). This implies that Φ(A)∩Φ(B) = ∅. Since Φ(A) and
Φ(B) are compact and convex sets of �2(R) considering the Euclidean norm, there exist a,b ∈ R and
a functional ρ defined for every x ∈H such that ρ(x) = ∑∞

i=1 xidi , with d = (di)i∈N ∈ c0, such that

ρ(y) � a > b � ρ(z),
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for each y ∈ Φ(A) and z ∈ Φ(B). Then〈
Φ(Y ),d

〉
� a > b �

〈
Φ(Z),d

〉 ⇒ min
Y ∈A

〈
Φ(Y ),d

〉
> max

Z∈B
〈
Φ(Z),d

〉
,

and this cannot occur because if D = Diag(d) ∈D(K(H)h), then

min
Y ∈A

〈
Φ(Y ),d

〉 = m and max
Z∈B

〈
Φ(Z),d

〉 = M,

with m and M defined in (4.3). Therefore M < m and this fact contradicts condition (3). �
Remark 8. The operator X in statement (2) of Theorem 7 has finite rank. Moreover, X can be de-
scribed as a finite diagonal block operator in the base of eigenvectors of the minimal compact operator
C + D1.

Let A a Banach space, B a proper closed subspace of A, and Z ∈ A a minimal element, that is
‖Z‖ = infB∈B ‖Z + B‖. Then, a functional ψ : A → C is called a witness of the B-minimality of Z if
‖ψ‖ = 1, ψ |B ≡ 0 and ψ(Z) = ‖Z‖ (see [7]).

Remark 9. Let Z = C + D1 ∈ K(H)h and suppose that there exists an operator X which satisfies the
conditions of statement (2) of Theorem 7. Then, we can define Ψ :K(H)h → R, given by Ψ (·) = tr(X ·),
such that

(1) ‖Ψ ‖ = 1,
(2) Ψ (C + D1) = tr(X(C + D1)) = ‖[C]‖,
(3) Ψ (D) = 0 ∀D ∈D(B(H)h).

Observe that Ψ acts as a functional witness of the D(K(H)h)-minimality of C + D1.

If we take v, w ∈ H, we can write v = ∑∞
i=1 viei and w = ∑∞

i=1 wiei with vi, wi ∈ C for all i ∈ N.
Then, we denote with v ◦ w the vector in H defined by

v ◦ w = (
v1 w1, v2 w2, v3 w3, . . .

) ∈ H.

The proof of the following corollary is the analogue of that of Corollary 3 in [2], considering the
special treatment for compact operators instead of matrices.

Corollary 10. Let C ∈ K(H)h, C �= 0, such that λmax(C) + λmin(C) = 0. Then, the following statements are
equivalent:

(1) C is minimal (as defined in Section 2).
(2) There exist {vi}r

i=1 ⊂ R(E+) and {v j}r+s
j=r+1 ⊂ R(E−), orthonormal sets such that

co
({vi ◦ vi}r

i=1

) ∩ co
({v j ◦ v j}r+s

i=r+1

) �= 0.

Here co({wk}n1
k=n0

) denotes the convex hull of the space generated by the finite family of vectors

{wk}n1
k=n0

⊂ H, and if wk = (w1
k , w2

k , w3
k , . . .) in the fixed base chosen in H (see Section 2), then we

denote with wk = (w1
k , w2

k , w3
k , . . .) ∈H.
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