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A conjecture posed by S. Hayajneh and F. Kittaneh claims that given A, B positive 
matrices, 0 ≤ t ≤ 1, and any unitarily invariant norm the following inequality holds

∥∥∣∣AtB1−t + BtA1−t
∥∥∣∣ ≤ ∥∥∣∣AtB1−t + A1−tBt

∥∥∣∣.

Recently, R. Bhatia proved the inequality for the case of the Frobenius norm and 
for t ∈ [ 14 , 

3
4 ]. In this paper, using complex methods we extend this result to 

complex values of the parameter t = z in the strip {z ∈ C : Re(z) ∈ [ 14 , 
3
4 ]}. 

We give an elementary proof of the fact that equality holds for some z in the 
strip if and only if A and B commute. We also show a counterexample to the 
general conjecture by exhibiting a pair of positive matrices such that the claim 
does not hold for the uniform norm. Finally, we give a counterexample for a related 
singular value inequality given by sj(AtB1−t + BtA1−t) ≤ sj(A + B), answering 
in the negative a question made by K. Audenaert and F. Kittaneh. The methods 
of proof and examples can be adapted with no modifications to operator algebras 
(infinite dimensional setting), for instance it follows that the inequality above holds 
for Hilbert–Schmidt operators with their Banach algebra norm derived from the 
infinite trace of B(H).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We begin this paper with some notations and definitions. The context here is the algebra Mn(C) of 
n ×n complex entries matrices, but the proofs adapt well to other (infinite dimensional) settings in operator 
theory, so let us assume that A stands for an operator algebra with trace, for instance A = Mn(C) with 
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its usual trace, or A = B2(H), the Hilbert–Schmidt operators acting on a separable complex Hilbert space 
with the infinite trace, or A = (A, Tr) a C∗-algebra with a finite faithful trace.

Definition 1.1. Let ‖ | ·‖ | denote a unitarily invariant norm on A, which we assume is equivalent to a symmetric 
norm, that is

‖|XY Z‖| ≤ ‖X‖∞‖|Y ‖|‖Z‖∞

whenever Y ∈ A (from now on ‖ · ‖∞ will denote the norm of the operator algebra).
For convenience we will use the notation τ(X) = ReTr(X). Let |X| =

√
X∗X stand for the modulus 

of the matrix or operator X, then the (right) polar decomposition of X is given by X = U |X| where U
is a unitary such that U maps Ran|X| into Ran(X) and is the identity on Ran|X|⊥ = Ker(X). Note that 
‖X‖2

2 = Tr(X∗X) = Tr [|X|2].

Consider the inequality

τ
(
AzBzA1−zB1−z

)
≤ τ(AB), (1)

for positive invertible operators A, B > 0 in A, and z ∈ C. We introduce some notation regarding vertical 
strips in the complex plane: let

S0 =
{
z ∈ C : 0 ≤ Re(z) ≤ 1

}
, S1/4 =

{
z ∈ C : 1/4 ≤ Re(z) ≤ 3/4

}
;

we will study the validity of (1) in both S0 and S1/4.
Intimately related to the expression above are the inequalities

∥∥∣∣bt(A,B)
∥∥∣∣ ≤ ∥∥∣∣ht(A,B)

∥∥∣∣ (2)

and
∥∥∣∣bt(A,B)

∥∥∣∣ ≤ ‖|A + B‖|, (3)

for positive matrices A, B ≥ 0 in A, where

bt(A,B) = AtB1−t + BtA1−t, t ∈ [0, 1];

the name bt is due to Bourin, who conjectured inequality (3) for n × n matrices in [5], and

ht(A,B) = AtB1−t + A1−tBt, t ∈ [0, 1]

is named after Heinz, and the well-known [7] inequality
∥∥∣∣ht(A,B)

∥∥∣∣ ≤ ‖|A + B‖|

carrying his name.
Recently, S. Hayajneh and F. Kittanneh proposed in [6] that the stronger (2) should also be valid in 

Mn(C); however, numerical computations (see Section 3) show that, at least for the uniform norm, this is 
false.

If we focus on the case ‖ |X‖ | = ‖X‖2 = Tr(X∗X)1/2 (the Frobenius norm in the case of n × n matrices) 
and we write ht = ht(A, B), bt = bt(A, B), then
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Tr |bt|2 = τ
(
b∗t bt

)
= τ

(
B1−tAt + A1−tBt

)(
AtB1−t + BtA1−t

)

= τ
(
B2(1−t)A2t) + τ

(
A2(1−t)B2t) + 2τ

(
AtBtA1−tB1−t

)

where we have repeatedly used the cyclicity of τ (i.e. τ(XY ) = τ(Y X)) and the fact that τ(Z∗) = τ(Z). 
Likewise

Tr |ht|2 = τ
(
B2(1−t)A2t) + τ

(
A2(1−t)B2t) + 2τ(AB).

Thus, proving that ‖bt‖2 ≤ ‖ht‖2 amounts to prove that

τ
(
AtBtA1−tB1−t

)
≤ τ(AB), (4)

and in fact, it is clear that both inequalities are equivalent – as remarked in [6].

2. Main results

We will divide the problem in regions of the plane (or the line), and then we will also consider the 
possibility of attaining the equality; we will see that this is only possible in the trivial case, i.e. when A, B
commute. We recall the generalized Hölder inequality, that we will use frequently: let 1

p + 1
q + 1

r = 1 for 
p, q, r ≥ 1 and X, Y , Z in A, then

Tr(XY Z) ≤ ‖XY Z‖1 ≤ ‖X‖p‖Y ‖q‖Z‖r. (5)

This is just a combination of the usual Hölder inequality together with

‖XY ‖s ≤ ‖X‖p‖Y ‖q

provided s ≥ 1 and 1
p + 1

q = 1
s (see [10], Theorem 2.8, for more details).

2.1. The inequality in the strip S1/4

We begin with an easy consequence of the Araki–Lieb–Thirring inequality.

Lemma 2.1. If A, B ≥ 0 and r ≥ 2, then

∥∥A1/rB1/r∥∥
r
≤ Tr(AB)1/r.

Proof. Note that

∥∥A1/rB1/r∥∥r
r

= Tr
([
A1/rB1/rB1/rA1/r]r/2) = Tr

([
A1/rB2/rA1/r]r/2)

which, by the Araki–Lieb–Thirring inequality (see [2], and note that r/2 ≥ 1) is less than or equal to

Tr
(
Ar/2rBr2/2rAr/2r) = Tr

(
A1/2BA1/2),

which in turn equals Tr(AB). �
Note that if we exchange the variables z �→ 1 − z and exchange the role of A, B, it suffices to consider 

half-strips or half-intervals around Re(z) = 1/2.
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For A > 0 we will denote with lnA the unique self-adjoint logarithm of A.

Proposition 2.2. If 0 < A, B and z ∈ S1/4, then

∣∣Tr
(
AzBzA1−zB1−z

)∣∣ ≤ Tr(AB).

Proof. Let z = 1/2 + iy, y ∈ R denote any point in the vertical line of the complex plane passing through 
x = 1/2. Then

∣∣Tr
(
AzBzA1−zB1−z

)∣∣ =
∣∣Tr

(
AiyA1/2B1/2BiyA−iyA1/2B1/2B−iy

)∣∣
≤ Tr

∣∣AiyA1/2B1/2BiyA−iyA1/2B1/2B−iy
∣∣

≤
∥∥AiyA1/2B1/2BiyA−iy

∥∥
2

∥∥A1/2B1/2B−iy
∥∥

2

=
∥∥A1/2B1/2∥∥2

2

by the Cauchy–Schwarz inequality and the fact that Aiy, Biy are unitary operators. Then by the previous 
lemma,

∣∣Tr
(
AzBzA1−zB1−z

)∣∣ ≤ Tr(AB)2/2 = Tr(AB).

Now consider z = 1/4 + iy, y ∈ R, a generic point in the vertical line over x = 1/4, then noting that 
1
4 + 1

4 + 1
2 = 1,

∣∣Tr
(
AzBzA1−zB1−z

)∣∣ =
∣∣Tr

(
B1/4A1/4AiyBiyB1/4A1/4A−iyA1/2B1/2B−iy

)∣∣

≤
∥∥B1/4A1/4∥∥2

4

∥∥B1/2A1/2∥∥
2

≤ Tr(AB)2/4+1/2 = Tr(AB),

where we used again the previous lemma and the generalized Hölder’s inequality (5).
Since the map z �→ Az = exp(z lnA) =

∑
k z

k (ln A)k
k! is analytic for A > 0, the product of matrices is also 

analytic and the trace is complex linear, the function

z �→ Tr
(
AzBzA1−zB1−z

)

is entire. Moreover, it is easy to check that if 0 ≤ Re(z) ≤ 1, then the function is bounded. By Hadamard’s 
three-lines theorem [9, p. 33], the bound τ(AB) is valid in the vertical strip 1/4 ≤ Re(z) ≤ 1/2, since it 
holds in the frontier of the strip. Invoking the symmetry z �→ 1 − z and exchanging the roles of A, B gives 
the desired bound on the full strip S1/4 = {1/4 ≤ Re(z) ≤ 3/4}. �

Regarding the inequalities conjectured by Bourin et al., note that we can assume A, B > 0: replacing A
with Aε = A + ε (and likewise with B), if the inequality (1) is valid for Aε, Bε then making ε → 0+ gives 
the general result: the following result that we state as corollary was recently obtained by R. Bhatia in [4]
and we should also point the reader to the paper by T. Ando, F. Hiai, K. Okubo [1].

Corollary 2.3. For any A, B ≥ 0 and any t ∈ [1/4, 3/4],

∥∥AtB1−t + BtA1−t
∥∥

2 ≤
∥∥AtB1−t + A1−tBt

∥∥
2 ≤ ‖A + B‖2.



T. Bottazzi et al. / J. Math. Anal. Appl. 426 (2015) 765–773 769
2.2. Inequality becomes equality

Let us consider the special case when the inequality above becomes an equality. We begin with the 
following lemma we will use on several occasions, and will be useful when we drop the assumption on 
nonsingularity of A, B. Note that

Tr
(
A1/2B1/2A1/2B1/2) = Tr

((
B1/4A1/2B1/4)2) ≥ 0.

Lemma 2.4. Let A, B ≥ 0, and assume

Tr
(
A1/2B1/2A1/2B1/2) = Tr(AB),

or
∥∥A1/4B1/4∥∥

4 = Tr(AB)1/4.

In either case, A commutes with B.

Proof. Name X = A1/2B1/2, and considering the inner product induced by τ , 〈X, Y 〉 = τ(XY ∗),

〈
X,X∗〉 = τ

(
X2) = τ

(
A1/2B1/2A1/2B1/2)

= τ(AB) = τ
(
X∗X

)
= ‖X‖2

2 = ‖X‖2‖X∗‖2.

But the Cauchy–Schwarz inequality becomes an equality if and only if X = λX∗, and in this case

λ = τ(XX∗)
‖X‖2‖X∗‖2

= 1,

(for a general proof of the case of equality in the Cauchy–Schwarz inequality see Proposition 2.1.3 in [8]). 
This means

A1/2B1/2 = B1/2A1/2,

and this implies that A commutes with B. On the other hand,

∥∥A1/4B1/4∥∥4
4 = Tr

((
B1/4A1/2B1/4)2)

= Tr
(
A1/2B1/2A1/2B1/2),

so what we have is just another way of writing the first equality condition. �
Proposition 2.5. Let A, B > 0 and assume that there is z0 ∈ S1/4 such that

∣∣Tr
(
Az0Bz0A1−z0B1−z0

)∣∣ = Tr(AB).

Then A commutes with B and Tr(AzBzA1−zB1−z) = Tr(AB) for any z ∈ C.

Proof. First consider the case when equality is reached in an interior point of the strip S1/4. Note that by 
the maximum modulus principle, this would mean that the function

f(z) = Tr
(
AzBzA1−zB1−z

)
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is constant in the strip S1/4, in particular equality holds at z0 = 1/2, and by the previous lemma, A commutes 
with B.

Now suppose equality is attained in the frontier, for instance at z0 = 1/4 + iy for some y ∈ R. Let 
X = B1/4A1/4AiyBiyB1/4A1/4, Y = B1/2BiyAiyA1/2. Then, if we go through the proof of Proposition 2.2
again, assuming equality

τ(AB) = τ
(
XY ∗) = 〈X,Y 〉 ≤ ‖X‖2‖Y ‖2

≤
∥∥B1/4A1/4∥∥2

4

∥∥A1/2B1/2∥∥
2 ≤ τ(AB). (6)

Arguing as in the previous lemma, there exists λ > 0 such that X = λY ,

B1/4A1/4AiyBiyB1/4A1/4 = λB1/2BiyAiyA1/2.

Canceling B1/4 on the left and A1/4 on the right we obtain

A1/4AiyBiyB1/4 = λB1/4BiyAiyA1/4,

but now both elements have the same norm and this shows that λ = 1; then

A1/4+iyB1/4+iy = B1/4+iyA1/4+iy,

and since A, B > 0, the existence of analytic logarithms shows that again A commutes with B. By symmetry, 
the same argument applies for any z0 = 3/4 + iy in the other border of the strip. �
Corollary 2.6. If A does not commute with B, the inequality is strict:

∣∣Tr
(
AzBtA1−zB1−z

)∣∣ < Tr(AB),

in some open set Ω ⊂ C containing the closed strip S1/4.

If we allow A, B to be non invertible, holomorphy is lost, but nevertheless in the same spirit we have the 
following result.

Proposition 2.7. For given A, B ≥ 0, there exists δ = δ(A, B) > 0 such that

∣∣Tr
(
AtBtA1−tB1−t

)∣∣ ≤ Tr(AB)

holds in the interval [1/4 − δ, 3/4 + δ]. If A does not commute with B, the inequality is strict in the open 
set (1/4 − δ, 3/4 + δ).

Proof. If A commutes with B, then the assertion is trivial. If not, arguing as in the last part of the proof 
of the previous proposition, we must have strict inequality

∣∣Tr
(
AtBtA1−tB1−t

)∣∣ < Tr(AB)

for t = 1/4, t = 3/4, and then by continuity the inequality extends a bit out of the closed interval [1/4, 3/4].
Consider t ∈ (1/4, 1/2) and put

X = B1/4A1/4At−1/4Bt−1/4, Y = B1/4A1/4A3/4−tB3/4−t.
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Note that 1
t , 

1
1−t ≥ 1 and define 1/p = t − 1/4 ∈ (0, 1/4), 1/q = 3/4 − t ∈ (1/4, 1/2), note also that 

1/p + 1/4 = t, 1/q + 1/4 = 1 − t. By repeated use of Hölder’s inequality

∣∣Tr
(
AtBtA1−tB1−t

)∣∣ ≤ ‖XY ‖1 ≤ ‖X‖t−1‖Y ‖(1−t)−1

≤
∥∥B1/4A1/4∥∥

4

∥∥A1/pB1/p∥∥
p

∥∥B1/qA1/q∥∥
q

∥∥A1/4B1/4∥∥
4.

Now apply Lemma 2.1 to each of the four terms (note that p > 4 and q > 2), and we have1

∣∣Tr
(
AtBtA1−tB1−t

)∣∣ ≤ ∥∥B1/4A1/4∥∥
4

∥∥A1/pB1/p∥∥
p

∥∥B1/qA1/q∥∥
q

∥∥A1/4B1/4∥∥
4

≤ Tr(AB).

If we assume equality of the traces, then

Tr(AB) =
∥∥B1/4A1/4∥∥

4

∥∥A1/pB1/p∥∥
p

∥∥B1/qA1/q∥∥
q

∥∥A1/4B1/4∥∥
4

and in particular, it must be that ‖A1/4B1/4‖4 = Tr(AB)1/4, and from Lemma 2.4 we can deduce that A
commutes with B. By the symmetry (t �→ 1 −t) the argument extends to (1/2, 3/4), and again by Lemma 2.4
we already know that A commutes with B if equality is attained at t = 1/2. This finishes the proof of the 
assertion that the inequality is strict in [1/4, 3/4] unless A commutes with B. �
Remark 2.8. The inequalities in the previous proof give in fact

Tr
∣∣B 1

4AtBtA1−tB
3
4−t

∣∣ ≤ Tr(AB)

for any t ∈ [ 14 , 
3
4 ]; this is a particular instance of [1, Theorem 2.10].

3. Counterexamples

In this section we exhibit specific cases of different kind. In Example 3.1 we choose A, B such that 
‖bt(A, B)‖∞ > ‖ht(A, B)‖∞, while in Example 3.2, it is shown that the jth singular value of A + B is not 
always greater than the jth singular value of bt(A, B). This provides negative answers to [6, Conjecture 1.2]
and [3, Problem 4] respectively.

Example 3.1. Consider the following positive definite matrices

A =

⎛
⎜⎝

1141 0 0
0 204 0
0 0 1/8

⎞
⎟⎠ and B =

⎛
⎜⎝

39 90 43
90 418 370
43 370 426

⎞
⎟⎠ .

1 Note that this is another proof of the inequality for real t ∈ [ 14 , 34 ].
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The following is the graph of f(t) = −‖bt(A, B)‖∞ + ‖ht(A, B)‖∞ for t ∈ [0, 12 ]:

For these matrices −‖bt(A, B)‖∞ + ‖ht(A, B)‖∞ � −2.3 at t = 0.15.

In [3, Problem 4] K. Audenaert and F. Kittaneh asked if sj(bt(A, B)) ≤ sj(A + B) for every j and 
0 < t < 1 (where sj(M), j = 1 . . . n denote the singular values of the matrix M arranged in non-increasing 
order).

Example 3.2. Consider the following positive definite matrices

A =

⎛
⎜⎝

6317 0 0
0 474 0
0 0 6

⎞
⎟⎠ and B =

⎛
⎜⎝

2078 2362 2199
2362 3267 2585
2199 2585 2492

⎞
⎟⎠ .

Then, for t = 1
2 we have

s
(
b 1

2
(A,B)

)
= (6826.57, 878.499, 591.716)

and

s(A + B) = (10561.4, 3629.62, 443.017).

In particular, s3(b 1
2
(A, B)) > s3(A + B).
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