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Abstract. Let H be a separable Hilbert space, and D(B(H)ah) the
anti-Hermitian bounded diagonals in some fixed orthonormal basis and
K(H) the compact operators. We study the group of unitary operators

Uk,d = {u ∈ U(H) : ∃ D ∈ D (B (H))
ah

such that u− eD ∈ K(H)}
in order to obtain a concrete description of short curves in unitary
Fredholm orbits Ob = {eKbe−K : K ∈ K(H)ah} of a compact self-
adjoint operator b with spectral multiplicity one. We consider the rec-
tifiable distance on Ob defined as the infimum of curve lengths mea-
sured with the Finsler metric defined by means of the quotient space
K(H)ah/D(K(H)ah). Then for every c ∈ Ob and x ∈ T (Ob)c there ex-
ist a minimal lifting Z0 ∈ B(H)ah (in the quotient norm, not necessarily
compact) such that γ(t) = etZ0 c e−tZ0 is a short curve on Ob in a certain
interval.

1. Introduction

Let B(H) be the algebra of bounded operators on a separable Hilbert

space H, K(H) and U(H) the compact and unitary operators respectively.

If an orthonormal basis is fixed we can consider matricial representations of

each A ∈ B(H) and diagonal operators which we denote with D (B (H)).

Consider the following subset of the unitary group U(H) of B(H):

(1.1) Uk,d = {u ∈ U(H) : ∃ D ∈ D (B (H))ah such that u− eD ∈ K(H)}.

In the present work we prove that Uk,d is a subgroup of U(H). Moreover,

Uk,d is closed, arc-connected and shares the topology of U(H) given by the

operator norm. Therefore Uk,d is a Lie subgroup in the sense of [9] and [10].

We did not find any reference to the subgroup Uk,d mentioned in the

literature and so we included here a detailed study of it. In Theorem 3.18

we prove that Uk,d is a Lie subgroup of U(H) according to the definition

mentioned before. The Lie algebra of Uk,d turns to be K(H)ah+D (B (H))ah
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2 T. BOTTAZZI AND A. VARELA

which is not complemented in B(H)ah and therefore a stronger notion of Lie

subgroup cannot be used (see Proposition 3.16).

This subgroup admits a generalization to UJ ,A for certain ideals J and

subalgebras A of B(H)h (see 3.19).

Our particular interest in Uk,d relies on the geometric study of the orbits

OVb = {ubu∗ : u ∈ V}

where b a self-adjoint operator. If the spectrum of b is finite Ob is a comple-

mented submanifold of b+K(H) (see [1]). If we consider a compact diagonal

self-adjoint operator b with spectral multiplicity one then the orbit Ob can

have a smooth structure (see Lemma 1 in [6]).

The subgroup Uk,d has the following properties.

• If Uk =
{
u ∈ U(H) : ∃ D ∈ D(K(H)ah) such that u− 1 ∈ K(H)

}
,

the following orbits coincide

Ob = OUkb = {ubu∗ : u ∈ Uk}

= OUk,db = {ubu∗ : u ∈ Uk,d}

• The natural Finsler metric defined in T (OUk,db )1 and T (OUkb )1 by

means of the quotient norm coincides if b is a compact self-adjoint

diagonal operator and we consider the identifications of the tangent

spaces with the quotients

T (OUkb )1 ∼= (TOb)c ∼= (TUk)1/(TIb)1 = K(H)ah/D(K(H)ah)

T (OUk,db )1 ∼= (TUk,d)1/(TIb)1 ∼=
(
K(H)ah +D (B (H))ah

)
/D (B (H))ah

∼= K(H)ah/D (B (H))ah

(see Remark 4.5 for details).

These properties allow the construction of minimum length curves of Ob
considering the rectifiable distance defined in the Preliminaries (see (2.6)).

Next we describe minimal vectors of the tangent space and their relation

with the short curves in these homogeneous spaces. We say that a self-

adjoint operator Z ∈ B(H) is minimal for a subalgebra A ⊂ B(H) if

(1.2) ‖Z‖ = inf
D∈A
‖Z +D‖,

for ‖ · ‖ the usual operator norm in B(H). Given a fixed Z we say that

D0 ∈ A is minimal for Z if ‖Z +D0‖ = infD∈A ‖Z +D‖, that is, if Z +D0

is minimal for A. These minimal operators Z allow the concrete description

of short curves γ(t) = eitZAe−itZ in the unitary orbit OA of a some fixed

self-adjoint operator A ∈ B(H)h, when considered with a certain natural

Finsler metric (see (2.4), [8], [1] and [6] for details and different examples).
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If we fix an orthonormal basis in H we can consider matricial represen-

tations and diagonal operators in B(H). In [6] we studied the orbit OA of

a diagonal compact self-adjoint operator b ∈ B(H) under the action of the

Fredholm unitary subgroup Uk = {eK : K ∈ K(H)ah} where K(H)ah de-

notes the compact anti-Hermitian operators. We used a particular element

Zr ∈ K(H)ah with the property that there does not exist a compact diag-

onal D0 such that the quotient norm ‖Zr + D0‖ = infD∈D(K(H)) ‖Zr + D‖
is attained. This example posted an interesting geometric question, since

the existence of such minimal compact diagonal D0 would allow the explicit

description of a short path with initial velocity [Zr, b] (see [8, 5]).

Using that lim (Zr)jj converges to a non-zero constant when j →∞ we

showed in [6] that the curve parametrized by

β(t) = etZrbe−tZr

with |t| ≤ π
2‖Zr‖ , is still a geodesic even though Zr is not a minimal operator.

Moreover, β can be approximated uniformly by minimal length curves of

finite matrices βn (with minimal initial velocity vectors) satisfying βn(0) =

β(0) = b and β′n(0) = β′(0).

Nevertheless, in the same paper, we showed examples of compact op-

erators Zo whose unique minimal diagonals had several limits. In these

cases the techniques used with Zr were not enough to prove either that

γ(t) = etZobe−tZo was a short curve nor that γ could be approximated by

curves of matrices.

In the present work we describe short curves that include those cases.

In order to do so we consider the unitary subgroup Uk,d. The action of this

group on a diagonal self-adjoint operator b produces the same orbit as Uk
but permits a concrete description of geodesics using minimal operators of

its Lie algebra K(H)ah +D (B (H))ah (see 4.2 and 4.6).

2. Preliminaries

Let (H, 〈, 〉) be a separable Hilbert space. As usual, B(H), U(H) and

K(H) denote the sets of bounded, unitary and compact operators on H. We

denote with ‖·‖ the usual operator norm in B(H). It should be clear from

the context the use of the same notation ‖·‖ to refer to the operator norm

or the norm on the Hilbert space ‖h‖ = 〈h, h〉1/2 for h ∈ H.

Given A ⊂ B(H), we use the superscript ah (respectively h) to note the

subset of anti-Hermitian (respectively Hermitian) elements of A.

Consider the Fredholm subgroup of U(H) defined as

Uk = {u ∈ U(H) : u− I ∈ K(H)} = {u ∈ U(H) : ∃ K ∈ K(H)ah, u = eK}
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(see [1] and Proposition 3.1).

U(H) is a Lie-Banach group and its Lie algebra T1 (U(H)) = B(H)ah.

We consider the usual analytical exponential map exp : B(H)ah → U(H),

given for any X ∈ B(H)ah by exp(X) =
∑∞

n=0
1
n!
Xn = eX . Then B(H)ah

can be made into a contractive Lie algebra (i.e., ‖[X, Y ]‖c ≤ ‖X‖c ‖Y ‖c for

all X, Y ∈ B(H)ah) defining ‖·‖c := 2 ‖·‖. Then, by Proposition 1.29 in [4]∥∥log
(
eXeY

)∥∥
c
≤ − log

(
2− e‖X‖c+‖Y ‖c

)
if ‖X‖c + ‖Y ‖c < log 2. Consequently, it can be proved that if

(2.1) ‖X‖+ ‖Y ‖ < log 2

2

the Baker-Campbell-Hausdorff (B-C-H) series expansion converges abso-

lutely for all X, Y ∈ B(H)ah. This B-C-H series can be defined as

log(eXeY ) =
∞∑
n=1

cn(T ),

where each cn is a polynomial map of B(H)ah × B(H)ah into B(H)ah of

degree n, ∀ n ∈ N. For instance, the first terms are: c1(X, Y ) = X + Y,
c2(X, Y ) = 1

2
[X, Y ],

c3(X, Y ) = 1
12

[X, [X, Y ]] + 1
12

[Y, [Y,X]].

Also, each cn is a sum of commutators for all n > 1. Therefore, the formula

of the series can be rewritten as follows

(2.2) log(eXeY ) = X + Y +
∞∑
n=2

cn(T ).

To see the complete general expression or other properties of the B-C-H

series for Lie algebras see [4] or [12].

Definition 2.1. Given X ∈ B(H)ah we will say that X is sufficiently close

to 0 if ‖X‖ < log 2
4

.

Using the previous definition the B-C-H series (2.2) converges for every

X, Y ∈ B(H)ah sufficiently close to 0, since this condition implies (2.1).

We define the unitary Fredholm orbit of a fixed self-adjoint A ∈ B(H)

as

(2.3) OA = {uAu∗ : u ∈ Uk(H)} ⊂ A+K(H).

Considering the action πb : Uk → OA, πb(u) = Lu · b = ubu∗ then OA
becomes a homogeneous space in some cases. If A has finite spectrum then

OA is a submanifold of A + K(H) (see Theorem 4.4 in [1]) and if A is
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a compact operator with spectral multiplicity one then OA has a smooth

structure (see Lemma 1 in [6]).

Denote by [·, ·] the commutator operator in B(H), that is, for any T, S ∈
B(H), [T, S] = TS − ST.

For each b ∈ OA, the isotropy group Ib is

Ib = {u ∈ Uk : ubu∗ = b} = {eK ∈ Uk : K ∈ K(H)ah, [K, b] = 0}

= {b}′ ∩ K(H)ah,

where {b}′ is the set of all operators in B(H) that commute with b (i.e.,

[T, b] = 0).

For each b ∈ OA, its tangent space is (TOA)b = {Y b−bY : Y ∈ K(H)ah}
and can be identified as follows

(TOA)b ∼= (TUk)1/(TIb)1 ∼= K(H)ah/
(
{b}′ ∩ K(H)ah

)
.

In this context we consider the following Finsler metric defined for x ∈
(TOA)b as

‖x‖b = inf
{
‖Y ‖ : Y ∈ K(H)ah such that [Y, b] = x

}
= inf

C∈({b}′∩K(H)ah)
‖Y0 + C‖ .(2.4)

where Y0+C is any element of the class [Y0] = {Y ∈ K(H)ah : [Y, b] = x}.
Note that this norm is invariant under the action of Uk.

An element Z ∈ B(H)ah such that [Z, b] = x and ‖Z‖ = ‖x‖b is called a

minimal lifting for x. This operator Z may not be compact and/or unique

(see [5]). Consider piecewise smooth curves β : [a, b]→ OA. We define

(2.5) L(β) =

∫ b

a

‖β′(t)‖β(t) dt , and

(2.6) dist(c1, c2) = inf {L(β) : β is smooth, β(a) = c1, β(b) = c2}

as the rectifiable length of β and distance between two points c1, c2 ∈ OA,

respectively.

If A is any C∗-algebra of B(H)h and {ek}∞k=1 is a fixed orthonormal basis

of H, we denote with D(A) the set of diagonal operators with respect to

this basis, that is

D(A) = {T ∈ A : 〈Tei, ej〉 = 0 , for all i 6= j} .

Given an operator Z ∈ A, if there exists an operator D1 ∈ D(A) such that

‖Z +D1‖ ≤ ‖Z +D‖
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for all D ∈ D(A), we say that D1 is a best approximant of Z in D(A). The

operator Z +D1 satisfies

‖Z +D1‖ = dist (Z,D (A)) ,

and Z + D1 is a minimal operator in the class [Z] of the quotient space

A/D(A), or similarly we say that D1 is minimal for Z.

These minimal operators play an important role in the concrete descrip-

tion of minimal length curves on OA (see [8] and [1]).

If Z is anti-Hermitian it holds that

dist (Z,D (A)) = dist
(
Z,D

(
Aah

))
,

since ‖Im(X)‖ ≤ ‖X‖ for every X ∈ A.

Let T ∈ B(H) and consider for the fixed basis of H the coefficients

Tij = 〈Tei, ej〉 for each i, j ∈ N. This define an infinite matrix (Tij)i,j∈N
such that their jth-column and ith-row of T are the vectors in `2 given by

cj(T ) = (T1j, T2j, ...) and fj(T ) = (Ti1, Ti2, ...), respectively.

We use σ(T ) and R(T ) to denote the spectrum and range of T ∈ B(H)h,

respectively.

We define Φ : B(H) → D(B(H)), Φ(X) = Diag(X), as the map that

builds a diagonal operator with the same diagonal as X (i.e., Φ(X)ii =

Diag(X)ii = Xii and 0 elsewhere). For a given bounded sequence {dn}n∈N ⊂
C we denote with Diag

(
{dn}n∈N

)
the diagonal (infinite) matrix with {dn}n∈N

in its diagonal and 0 elsewhere.

3. The unitary subgroup Uk,d

Recall the unitary Fredholm group

Uk = {u ∈ U(H) : u− 1 ∈ K(H)}

(see [1] and [6]) and define the following subsets of U(H):

Uk,d = {u ∈ U(H) : ∃ D ∈ D(B(H)ah) such that u− eD ∈ K(H)},

Ud = {u ∈ U(H) : ∃ D ∈ D(B(H)ah) such that u = eD}

= U(H) ∩ D(B(H))

Uk+d =
{
u ∈ U(H) : ∃ K ∈ K(H)ah and D ∈ D(B(H)ah)

such that u = eK+D
}
.

(3.1)

Also denote with

OFb = {ubu∗ : u ∈ F},

where F is any of the unitary sets defined in (3.1). The main purpose of

this section is the study of these unitary sets and its relations.
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The following Proposition has been proved in [6] using arguments of

Lemma 2.1 in [1].

Proposition 3.1. Uk = {eK : K ∈ K(H)ah, ‖K‖ ≤ π}.

Remark 3.2. Let S0 ∈ K(H)ah and D0 ∈ D (B (H))ah. Then, the exponen-

tial series∑∞
n=0

1
n!

(S0 +D0)
n converges absolutely and

∞∑
n=0

1

n!
(S0 +D0)

n =

=
∞∑
n=0

1

n!

(
Sn0 +

(
n

1

)
Sn−10 D0 + · · ·+

(
n

n− 1

)
S0D

n−1
0 +Dn

0

)

=
∞∑
n=0

1

n!
S0

(
Sn−10 +

(
n

1

)
Sn−20 D0 + · · ·+

(
n

n− 1

)
Dn−1

0

)
+

1

n!
Dn

0

= S0

∞∑
n=1

1

n!

(
Sn−10 +

(
n

1

)
Sn−20 D0 + · · ·+

(
n

n− 1

)
Dn−1

0

)
︸ ︷︷ ︸

||

Ψ(S0, D0)

+
∞∑
n=0

1

n!
Dn

0

= S0Ψ(S0, D0) + eD0 .

(3.2)

with S0Ψ(S0, D0) ∈ K(H).

Proposition 3.3. Uk,d is a unitary subgroup of U(H) and it equals

UkUd = {u ∈ U(H) :∃ K ∈ K(H)ah, ‖K‖ ≤ π, and

D ∈ D(B(H)ah) such that u = eKeD
}
.

Moreover

Uk,d = UkUd = UdUk.

Proof. Let u ∈ Uk,d, then there exists D ∈ D(B(H)ah) such that u − eD ∈
K(H). Then

ue−D − 1 ∈ K(H)⇒ ∃K ∈ K(H)ah, ‖K‖ ≤ π such that ue−D = eK

⇒ u = eKeD,

and therefore u ∈ UkUd.
Conversely, if there exists K ′ ∈ K(H)ah, and D′ ∈ D(B(H)ah) such that

u = eK
′
eD
′ ∈ U(H), then

ue−D
′
= eK

′ ∈ Uk ⇒ ue−D
′−1 ∈ K(H)⇒ (ue−D

′−1)eD = u−eD′ ∈ K(H).
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These calculations prove that Uk,d = Uk.Ud.
Similar computations (with left multiplication of e−D) lead to the equal-

ity Uk,d = UdUk.
Now we will prove that Uk,d is a group. Let u, v ∈ Uk,d:

• There exists D ∈ D(B(H)ah) such that u − eD ∈ K(H). Then u∗ −
e−D ∈ K(H)⇒ u∗ ∈ Uk,d.
• Using that Uk,d = UkUd we can write u = eK1eD1 and v = eK2eD2 ,

with K1, K2 ∈ K(H)ah and D1, D2 ∈ D(B(H)ah). Then using Re-

mark 3.2

uv = eD1+D2 +K1Ψ(K1, D1)+eD2K2Φ(K2, D2)+K1Ψ(K1, D1)K2Φ(K2, D2).

Therefore uv − eD1+D2 ∈ K(H) which implies that uv ∈ Uk,d.

Then, Uk,d is a unitary subgroup of U(H). �

Proposition 3.4. Let Uk,d, Ud and Uk+d be as defined in (3.1), then the

following statements hold:

(1) Ud ( Uk,d.
(2) Uk ( Uk,d.
(3) Uk+d ⊆ Uk,d.
(4) If u ∈ Uk,d then u = K ′ +D′, with K ′ ∈ K(H) and D ∈ D(U(H)).

(5) For every K ∈ K(H)ah and D ∈ D(B(H)ah) there exists K ′ ∈
K(H)ah such that eKeD = eDeK

′
.

(6) Uk ( Uk+d
(7) Uk = {u ∈ U(H) : ∃D ∈ D(K(H)ah) such that u− eD ∈ K(H)}.

Proof. (1) It is apparent.

(2) u ∈ Uk ⇔ u− 1 ∈ K(H)⇔ u− e0 ∈ K(H).

(3) Let eK+D with K ∈ K(H)ah and D ∈ D(B(H)ah). Then

eK+D = 1 + (K +D) +
1

2!
(K +D)2 + ... = eD +KΨ(K,D)⇒

⇒ eK+D − eD ∈ K(H)⇒ eK+D ∈ Uk,d.

(4) If u ∈ Uk,d ⇒ u − eD ∈ K(H) with D ∈ D(B(H)ah) ⇒ ∃K ′ ∈
K(H)/ u = K ′ + eD.

(5) If K ∈ K(H)ah and D ∈ D(B(H)ah) then Proposition 3.1 implies

that eK − 1 ∈ K(H) which gives (eK − 1)eD = eKeD − eD ∈ K(H)

and e−DeKeD − 1 ∈ K(H). Then, e−DeKeD ∈ Uk and there exists

K ′ ∈ K(H)ah such that e−DeKeD = eK
′
. The result follows easily.

(6) It is apparent.
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(7) If u ∈ Uk then u − 1 = u − e0 ∈ K(H) with 0 ∈ D(K(H)ah) and

then u ∈ {u ∈ U(H) : ∃D ∈ D(K(H)ah) such that u− eD ∈ K(H)}.
Conversely, let u ∈ U(H) and D ∈ D(K(H)ah) such that u − eD ∈
K(H). Then

u− 1 = u− eD + eD − 1 ∈ K(H),

since eD ∈ Uk, which completes the proof.

�

Proposition 3.5. Let K1, K2 ∈ K(H)ah, D1, D2 ∈ D(B(H)ah), then the

following statements are equivalent:

a) eK1eD1 = eK2eD2

b) There exists d ∈ D(K(H)ah) such that

eK2 = eK1e−d and eD2 = edeD1 = ed+D1 .

Proof. b) =⇒ a) is apparent after computing eK2eD2 .

Let us consider a) =⇒ b).

If eK1eD1 = eK2eD2 then eD1−D2 = e−K1eK2 . Since e−K1 , eK2 ∈ Uk which

is a group, then there exists K1,2 ∈ K(H)ah such that ‖K1,2‖ ≤ π and

e−K1eK2 = eK1,2 (see Proposition 3.1). Moreover, there exists a diagonal

D1,2 ∈ D(B(H)ah) with ‖D1,2‖ ≤ π such that eD1−D2 = eD1,2 . Therefore

eK1,2 = e−K1eK2 = eD1−D2 = eD1,2

with K1,2 ∈ K(H)ah and D1,2 ∈ D(B(H)ah). Using Theorem 3.1 in [7] we

can conclude that |K1,2| = |D1,2| which implies that K1,2 and D1,2 are both

diagonal and compact operators. If we chose −d = D1,2 ∈ D(K(H)ah), then

eK2 = eK1eD1−D2 = eK1eD1,2 = eK1e−d

and

eD2 = eD2−D1eD1 = e−D1,2eD1 = edeD1

which proves the proposition. �

Proposition 3.6. Let u ∈ U(H). Then the following statements are equiv-

alent

a) u ∈ Uk,d
b) u−Diag(u) ∈ K(H) and |uj,j| →

j→∞
1.

Proof. a) ⇒ b) If u ∈ Uk,d then there exists D ∈ D (B (H))ah such that

u − eD ∈ K(H). Then Diag(u − eD)j,j = uj,j − eDj,j →
j→∞

0 and therefore
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Diag(u)− eD ∈ K(H) and |uj,j| →
j→∞

1. Then since

u− eD = u−Diag(u) + Diag(u)− eD︸ ︷︷ ︸
∈K(H)

∈ K(H),

we obtain that u−Diag(u) ∈ K(H).

b) ⇐ a) If uj,j →
j→∞

1 then there exists D ∈ D (B (H))ah such that(
uj,j − eDj,j

)
→
j→∞

0 (for example take eDj,j = 1
|uj,j |uj,j when j is sufficiently

large). Then Diag(u)−eD ∈ K(H). Using the hypothesis that Diag(u)−eD ∈
K(H), then

u−Diag(u)︸ ︷︷ ︸
∈K(H)

+ Diag(u)− eD︸ ︷︷ ︸
∈K(H)

= u− eD ∈ K(H)

and therefore u ∈ Uk,d. �

Remark 3.7. The previous proposition allow us to prove easily that Uk,d (

U(H) since the block diagonal defined symmetry u =

(
s 0 0 ...
0 s 0 ...
0 0 s...

...
...

)
with s =

( 0 1
1 0 ) clearly does not satisfy conditions b) of Proposition 3.6, but u ∈ U(H).

The following proposition is a consequence of results present in [7].

Proposition 3.8. Let K, K ′ ∈ K(H)ah satisfying ‖K‖, ‖K ′‖ ≤ π and

D ∈ D (B (H))ah be such that eDeK = eK
′
eD. Then ‖K‖ = ‖K ′‖ and

a) if ‖K‖ = ‖K ′‖ = π, then

(1) |K| = e−D|K ′|eD,

(2) v ∈ H is an eigenvector of K with corresponding eigenvalue λ ∈
iR, |λ| < π ⇐⇒ eDv is an eigenvector of K ′ with corresponding

eigenvalue λ ∈ iR, |λ| < π,

(3) if EX is the spectral measure of the operator X, then

K − e−DK ′eD = 2πi (EK(R + iπ)− Ee−DK′eD(R + iπ))

b) and moreover, if ‖K‖ = ‖K ′‖ < π then K = e−DK ′eD.

Proof. Observe first that since eDeK = eK
′
eD then

(3.3) eK = e−DeK
′
eD = ee

−DK′eD

and therefore |K| = |e−DK ′eD| = e−D |K ′| eD (see Theorem 3.1 i) in [7])

which implies ‖K‖ = ‖K ′‖.
a) (1) This is a direct consequence of (3.3), the fact that σ(K) and

σ(e−DK ′eD) are contained in S = {z ∈ C : −π ≤ Im(z) ≤ π}
and Theorem 3.1 i) of [7].
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(2) Consider λ ∈ σ(K) ⊂ iR, |λ| < π and v ∈ H such that

Kv = λv. Then eKv = eλv and the equation (3.3) imply

that eλ is an eigenvalue of ee
−DK′eD with eigenvector v. Then

λ ∈ σ(e−DK ′eD) (because |λ| < 1) with eigenvector v. There-

fore λ ∈ σ(K ′) with eigenvector eDv. The other implication

follows similarly.

(3) This statement follows from σ(K), σ(e−DK ′eD) ⊂ S, Remark

2.4 and Theorem 4.1 in [7].

b) If the strict inequality ‖K‖ = ‖K ′‖ < π holds then (3.3) and Corol-

lary 4.2 iii) in [7] imply directly that K = e−DK ′eD.

�

Corollary 3.9. Let K, K ′ ∈ K(H)ah, ‖K‖, ‖K ′‖ ≤ π and D ∈ D (B (H))ah.

Then

a) if ‖K‖ = ‖K ′‖ = π, the following equivalence holds

eDeK = eK
′
eD ⇐⇒ K−e−DK ′eD = 2πi (EK(R + iπ)− Ee−DK′eD(R + iπ))

b) and if ‖K‖, ‖K ′‖ < π, the following equivalence holds

eDeK = eK
′
eD ⇐⇒ K = e−DK ′eD

Proof. a) If eDeK = eK
′
eD then

K − e−DK ′eD = 2πi (EK(R + iπ)− Ee−DK′eD(R + iπ))

follows from a) (3) of the previous Proposition 3.8.

The converse is proved using thatK−2πiEK(R+iπ) = e−DK ′eD−
Ee−DK′eD(R + iπ) implies that

eK−2πiEK(R+iπ) = ee
−DK′eD−2πiE

e−DK′eD (R+iπ)

and since K commutes with EK and e−DK ′eD with Ee−DK′eD , follows

that

eKe−2πiEK(R+iπ) = ee
−DK′eDe−2πiEe−DK′eD (R+iπ).

Since e−2πiEK(R+iπ) = e−2πiEe−DK′eD (R+iπ) = 1 then

eK = ee
−DK′eD = e−DeK

′
eD

which ends the proof.

b) It is apparent using the previous Proposition 3.8 (b) and the fact

that ee
−DK′eD = e−DeK

′
eD.

�
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In [11] Thompson proved for any X, Y ∈ Mn(C)ah that there exist uni-

taries U, V such that

(3.4) eXeY = eU
∗XU+V ∗Y V .

Subsequently, in [3] Antezana et. al. proved a generalization of (3.4) for

compact operators: given K1, K2 ∈ K(H)ah, there exist unitaries Un, Vn, for

n ∈ N, such that

eK1eK2 = lim
n→∞

eU
∗
nK1Un+V ∗nK2Vn

where the convergence is considered in the usual operator norm. The fol-

lowing proposition adds a new simple case where this equality holds.

Proposition 3.10. Let K ∈ K(H)ah and D ∈ D(B(H)ah) and suppose that

there exists λ ∈ iR such that lim
n→∞

Dnn = λ. Then, there exist unitaries

Un, Vn, for n ∈ N, such that

eKeD = lim
n→∞

eU
∗
nKUn+V ∗nDVn .

Proof. Observe that D − λI ∈ D(K(H)ah). Then, using Theorem 3.1 and

Remark 3.3 in [3] there exist unitaries Un, Vn, for n ∈ N, such that

eKeDe−λI = eKeD−λI = lim
n→∞

eU
∗
nKUn+V ∗n (D−λI)Vn

= lim
n→∞

eU
∗
nKUn+V ∗nDVne−λI .

Therefore, eKeD = lim
n→∞

eU
∗
nKUn+V ∗nDVn . �

Proposition 3.11. Let K1, K2 ∈ K(H)ah and D1, D2 ∈ D(B(H)ah) such

that K1 + D1 and K2 + D2 are sufficiently close to 0 (see Definition 2.1).

Then, there exists K ∈ K(H)ah such that

eK1+D1eK2+D2 = eK+D1+D2 .

Proof. Let K1, K2 ∈ K(H)ah and D1, D2 ∈ D(B(H)ah) such that K1 + D1

and K2 +D2 are sufficiently close to 0. Using the B-C-H formula (2.2), then

X = log
(
eK1+D1eK2+D2

)
= K1 +D1 +K2 +D2 +

∑
n≥2

cn(K1 +D1, K2 +D2).

Also, observe that cn(K1 + D1, K2 + D2) ∈ K(H)ah for every n, since

K(H) is a two-sided closed ideal and [D1, D2] = 0. Therefore, X = K +D,

with K ∈ K(H)ah and D ∈ D(B(H)ah) and

(3.5) eK1+D1eK2+D2 = eK+D ∈ Uk+d.

In particular D = D1 + D2, since each cn is a sum of commutators and

Diag ([A,B]) = 0 for every A,B ∈ B(H)ah. �

Corollary 3.12. Let K1, K2 ∈ K(H)ah and D1, D2 ∈ D(B(H)ah).
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(1) If K1 + D1 and K2 + D2 are sufficiently close to 0 (see Definition

2.1), then

eK1+D1eK2+D2 = eK̃+D1+D2 , with

K̃ = K1 +K2 +
∑
n≥2

cn(K1 +D1, K2 +D2) ∈ K(H)ah

and Diag(K̃) = Diag(K1 +K2).

(2) If K1 and D1 are sufficiently close to 0, there exist K ′, K ′′ ∈ K(H)ah

such that

(3.6) eK1eD1 = eD1eK
′
= eK

′′+D1 .

Proof. These equalities are due to item (3) of the Proposition 3.4, Proposi-

tion 3.11 and some calculations from its proof. �

Theorem 3.13. Uk,d is arc-connected and closed in U(H).

Proof. Every u = eKeD ∈ Uk,d (with K ∈ K(H)ah and D ∈ D (B (H))ah) is

connected to 1 by the curve γ(t) = etKetD, for t ∈ [0, 1].

Consider now the closedness of Uk,d. Let {un}n∈N ⊂ Uk,d, un = eKneDn

for n ∈ N, Kn ∈ K(H)ah and Dn ∈ D (B (H))ah be a sequence such that

lim
n→∞

un = u0 in the usual operator norm in B(H). We will prove that

u0 ∈ Uk,d.
Since u0−un = u0−eDn +eDn−un tends to 0 as n→∞ and eDn−un ∈

K(H), for all n ∈ N, then dist
(
{u0 − eDn}n∈N , K(H)

)
= 0.

Observe that

dist
({

Diag(u0)− eDn
}
n∈N ,K(H)

)
=

= dist
({

Diag(u0)−Diag(un) + Diag(un)− eDn
}
n∈N ,K(H)

)
≤ inf

K∈K(H)
‖Diag(u0)−Diag(un)‖+ ‖Diag(un)− eDn −K‖

(3.7)

for any n ∈ N.

Note that un − eDn ∈ K(H) which implies that Diag
(
un − eDn

)
=

Diag (un) − eDn ∈ D (K(H)). Since un → u0 then Diag(un) → Diag(u0).

Then the first summand in the last inequality (3.7) can be chosen to be ar-

bitrarily small for big n and the infimum of the second term is zero because

Diag(un)− eDn ∈ K(H). Then

dist
({

Diag(u0)− eDn
}
n∈N ,K(H)

)
= 0

= dist
({

Diag(u0)− eDn
}
n∈N , D (K(H))

)
.

(3.8)
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Moreover, using that un − eDn ∈ K(H), for every K ∈ K(H) holds that

dist (u0 −Diag(u0),K(H)) = inf
K∈K(H)

‖u0 −Diag(u0)−K‖

≤ ‖u0 −Diag(u0)− un + eDn −K‖

≤ ‖u0 − un‖+ ‖eDn −Diag(u0)−K‖

(3.9)

Here both summands of the last term can be chosen to be arbitrarily small.

It is enough to take n appropriately, since un → u0 and the distance

from
{

Diag(u0)− eDn
}
n∈N to K(H) is null as seen above in (3.8). Then

dist (u0 −Diag(u0) , K(H)) = 0 and therefore

(3.10) u0 −Diag(u0) ∈ K(H).

If there exists δ > 0 such that for a subsequence {eDnk}k∈N, for k ∈ N, holds

that |(Diag(u0) − eDnk )j,j| ≥ δ for infinite j ∈ N which contradicts (3.8).

Therefore, given δ > 0, only finite n ∈ N satisfy that |(Diag(u0)−eDn)j,j| ≥ δ

for infinite j ∈ N. Then, if k ∈ N and we choose δ = 1
k
, there exists

nk ∈ N such that if n ≥ nk then |(Diag(u0) − eDn)j,j| ≥ 1
k

only for finite

j ∈ N. Observe that the subsequence nk could be chosen to be strictly

increasing. For each k ∈ N, we will define a sub-index jk ∈ N such that

|(Diag(u0)− eDnk )j,j| < 1
k

for all j ≥ jk, j ∈ N. Moreover jk can be chosen

to be strictly increasing in k and j1 > 1. Therefore, for each k ∈ N, there

exists nk, jk ∈ N such that

(3.11) |(Diag(u0)− eDnk )j,j| <
1

k
, for all j ≥ jk

Then define the following unitary diagonal matrix eD in terms of its j, j

entries (and zero elsewhere) whose construction is based in the eDnk , and

the corresponding jk mentioned above:

(3.12) (eD)j,j =



1, if 1 ≤ j < j1(
eDn1

)
j,j
, if j1 ≤ j < j2(

eDn2

)
j,j
, if j2 ≤ j < j3

· · · · · ·(
eDnk

)
j,j
, if jk ≤ j < jk+1

· · · · · ·

.

D can be chosen as the anti-Hermitian diagonal matrix formed with the

corresponding parts of 0, Dn1 , Dn2 , . . . , Dnk
, . . . .

If we define j0 = 1 and take any j ∈ N, then equation (3.11) and defini-

tion (3.12) imply that

|(Diag(u0)− eD)j,j| = |(Diag(u0)− eDnk )j,j| <
1

k
, provided jk ≤ j < jk+1

Then (Diag(u0)−eD)j,j → 0 as j →∞, and therefore Diag(u0)−eD ∈ K(H)

since it is a diagonal matrix.
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Using that also u0 − Diag(u0) ∈ K(H) (see (3.10)) we conclude that

(u0 −Diag(u0)) +
(
Diag(u0)− eD

)
= u0 − eD ∈ K(H), which implies that

u0 ∈ Uk,d and therefore Uk,d is closed. �

Lemma 3.14. There exists ε0 > 0 such that if u ∈ Uk,d and ‖u − 1‖ < ε0

then u ∈ Uk+d.
Moreover, there exist K ∈ K(H)ah and D ∈ D (B (H))ah such that

a) u = eK+D with K,D ∈ exp−1 (B(1, 3ε0)),

b) K,D are sufficiently close to 0 and

c) K +D ∈ exp−1 (B(1, ε0)) ∩ B(H)ah.

Proof. Let us fix δ0 > 0 such that fulfills two conditions. One of them is that

if V ∈ B(0, δ0)∩B(H)ah then V is sufficiently close to 0 as in Definition 2.1.

The other one is that exp : B(0, δ0) ∩ B(H)ah → exp (B(0, δ0)) ∩ U(H) is

a diffeomorfism considering the usual operator norm. The last requirement

can be fulfilled after applying the inverse map theorem for Banach spaces.

Then define ε0 = ε > 0 such that

(3.13) B(1, ε) ⊂ B(1, 3ε) ⊂ exp (B(0, δ0)) .

If we take u ∈ Uk,d ∩ B(1, ε), then there exists K1 ∈ K(H)ah and D1 ∈
D (B (H))ah such that u = eK1eD1 . Observe that the j, j entries of the

diagonal of u = eK1eD1 are eK1
j,j e

D1
j,j .

Then ‖u − 1‖ < ε implies that |eK1
j,j e

D1
j,j − 1| < ε for all j ∈ N. Suppose

that |eD1
j,j − 1| ≥ 2ε for infinite j ∈ N. Then, using that |eD1

j,j | = 1 we obtain

that |e−D1
j,j −1| =

∣∣eD1
j,j

(
e−D1
j,j − 1

)∣∣ = |1− eD1
j,j | ≥ 2ε, and that |eK1

j,j − e
−D1
j,j | =∣∣(eK1

j,j − e
−D1
j,j

)
eD1
j,j

∣∣ = |eK1
j,j e

D1
j,j − 1| < ε for infinite j ∈ N. Therefore, there

must exist infinite j ∈ N such that

(3.14) |eK1
j,j − e

−D1
j,j | < ε and |e−D1

j,j − 1| ≥ ε
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Therefore

|eK1
j,j − 1| =

∣∣eK1
j,j − e

−D1
j,j + e−D1

j,j − 1
∣∣ ≥ ∣∣|eK1

j,j − e
−D1
j,j | − |e

−D1
j,j − 1|

∣∣
= |e−D1

j,j − 1| − |eK1
j,j − e

−D1
j,j | ≥ 2ε− ε = ε.

for infinite j ∈ N, where we used (3.14) in the last equality and inequality.

This is a contradiction because eK1 ∈ Uk and then eK1 − 1 ∈ K(H) which

implies that the diagonal of eK1 tends to 1. Then |eD1
j,j − 1| ≥ 2ε only for

finite j ∈ N. Choosing appropriately a compact anti-Hermitian diagonal d

we can construct D2 = D1 + d ∈ D (B (H))ah and K2 ∈ K(H)ah such that

u = eK1eD1 = eK2eD2 and |eD2
j,j − 1| ≤ 2ε for all j ∈ N (see Proposition 3.5).

Then, ‖eD2 − 1‖ < 2ε and ‖eD2 − 1‖ = ‖e−D2
(
eD2 − 1

)
‖ = ‖1− e−D21‖ =

‖e−D2 − 1‖ < 2ε. Moreover, since eD2 is unitary,

‖eK2 − 1‖ ≤‖eK2 − e−D2‖+ ‖e−D2 − 1‖

=
∥∥(eK2 − e−D2

)
eD2
∥∥+ ‖e−D2 − 1‖

=
∥∥eK2eD2 − 1

∥∥+ ‖e−D2 − 1‖

= ‖u− 1‖+ ‖e−D2 − 1‖ < ε+ 2ε = 3ε

(3.15)

We obtained that ‖eD2−1‖ < 2ε and ‖eK2−1‖ < 3ε which implies that eD2

and eK2 ∈ exp (B(0, δ0)) (see the definition of ε in (3.13). Therefore, using

that exp : B(0, δ0) ∩ B(H)ah → exp (B(0, δ0)) ∩ U(H) is a diffeomorfism,

there exist unique D and K in exp−1 (B(0, 3ε)) ∩ B(H)ah ⊂ B(0, δ0) ∩
B(H)ah such that eD = eD2 and eK = eK2 . Standard calculations can show

that under these conditions D must be diagonal and K compact. Hence

D ∈ exp−1 (B(0, 3ε)) ∩ D (B (H))ah and K ∈ exp−1 (B(0, 3ε)) ∩ K(H)ah.

Moreover, since D,K ∈ B(0, δ0) they are sufficiently close to 0. Then using

(3.6)

u = eKeD = eK+D ∈ Uk+d
with K ∈ K(H)ah and D ∈ D (B (H))ah, K,D ∈ exp−1 (B(0, 3ε)) and K,D

sufficiently close to 0 as required in a) and b).

Since eK+D = u ∈ Uk,d, and K and D are sufficiently close to 0, then

‖K+D‖ < π. Hence, since exp : exp−1 (B(1, ε))→ B(1, ε) is a diffeomorfism

there exists V ∈ exp−1 (B(1, ε)) such that eV = u = eK+D. Then Corollary

4.2 in [7] implies that V = K + D and therefore K + D ∈ exp−1 (B(1, ε))

as required in c). �

Proposition 3.15. There exists V ⊂ B(H)ah an open neighborhood of 0

such that

exp
(
V ∩

(
K(H)ah +D (B (H))ah

))
= exp (V) ∩ Uk,d
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Proof. Take V = exp−1 (B(1, ε0))∩B(H)ah, where ε0 is the one from Lemma

3.14. Then, as seen in that lemma, for every u ∈ Uk,d, and u = eK1eD1 ∈
B(1, ε0) with K1 ∈ K(H)ah and D1 ∈ D (B (H))ah, there exist K ∈ K(H)ah∩
exp−1 (B(1, 3ε0)) and D ∈ D (B (H))ah ∩ exp−1 (B(1, 3ε0)) such that

(3.16) u = eK+D, with (K +D) ∈ exp−1 (B(1, ε0)) ∩ B(H)ah.

Suppose first that V ∈ V and eV ∈ exp (V) ∩ Uk,d. Then, as commented in

(3.16), there exists K ∈ K(H)ah and D ∈ D (B (H))ah such that eV = eK+D.

Since the exponential is a diffeomorfism restricted to the neighborhood V
then V = K +D. Therefore

exp (V) ∩ Uk,d ⊂ exp
(
V ∩

(
K(H)ah +D (B (H))ah

))
.

Now suppose that V ∈ V and

eV = eK+D ∈ exp
(
V ∩

(
K(H)ah +D (B (H))ah

))
with K ∈ K(H)ah and D ∈ D (B (H))ah. Then clearly eV ∈ exp (V) and

using (3) from Properties 3.4 we obtain that also eV = eK+D ∈ Uk,d holds.

This proves that exp
(
V ∩

(
K(H)ah +D (B (H))ah

))
⊂ exp (V)∩Uk,d which

concludes the proof.

�

Proposition 3.16. {X ∈ B(H)ah : etX ∈ Uk,d,∀t ∈ R} = K(H)ah +

D (B (H))ah.

Proof. The property (3) of Proposition 3.4 directly implies that et(K+D) =

etK+tD ∈ Uk,d for all t ∈ R and therefore K(H)ah +D (B (H))ah ⊂ L(Uk,d).
Suppose now that X 6= 0 (0 is a trivial case) and let X ∈ L(Uk,d), then

etX ∈ Uk,d,∀t ∈ R. In particular etX ∈ Uk,d holds for small |t|, for example

for t0 = δ0
2‖X‖ <

δ0
‖X‖ where δ0 > 0 is the constant used in the proof of Lemma

3.14. Then, ‖t0X‖ = |t0|‖X‖ < δ0 and u = et0X ∈ Uk,d. Therefore using

Lemma 3.14, there exists K ∈ K(H)ah and D ∈ D (B (H))ah such that

et0X = eK+D.

The constant δ0 of the proof of Lemma 3.14 is chosen such that exp :

B(0, δ0) ∩ B(H)ah → exp (B(0, δ0)) ∩ U(H) is a diffeomorfism. Then t0X =

K + D and therefore X = 1/t0(K + D) = 1/t0K + 1/t0D ∈ K(H)ah +

D (B (H))ah as required. �

Remark 3.17. Following V.2.3 [9] and [10] (page 428) we call H a Lie

subgroup of G if H is a closed subgroup of a Banach–Lie group G which is

itself a Lie group relative to the induced topology.
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Therefore the previous results allow us to state the following.

Theorem 3.18. Uk,d is a Lie subgroup of U(H) and its Lie algebra is

L(Uk,d) = K(H)ah +D (B (H))ah.

Proof. According to the definition of Lie subgroup mentioned in the previous

Remark 3.17, Theorem 3.13 and Proposition 3.15 imply that Uk,d is a Lie

subgroup of U(H).

The equality L(Uk,d) = K(H)ah + D (B (H))ah follows from Corollary

V.2.2 in [9] and Proposition 3.16. �

Although there exist stronger notions of Lie subgroups those cannot be

used for Uk,d since its Lie algebra K(H)ah+D (B (H))ah is not complemented

in B(H)ah (the Lie algebra of U(H)).

Remark 3.19. Generalization of the Uk,d group.

The proofs of some of the basic properties we use in the study of Uk,d
require that the exponential exp : K(H)ah → Uk must be surjective. This

is the reason why the following generalization involves ideals J with this

property.

If J ⊂ B(H) is either of the two-sided closed ideals of p–Schatten oper-

ators (for p ∈ [0,∞)) or K(H), and A is any C∗ subalgebra of B(H), then

the following unitary sets of U(H) can be defined, by analogy with (3.1):

UJ = {u ∈ U(H) : u− 1 ∈ J },

UJ ,A = {u ∈ U(H) : ∃ A ∈ Aah such that u− eA ∈ J },

UA = {u ∈ U(H) : ∃ A ∈ Aah such that u = eA},

UJ+A = {u ∈ U(H) : ∃ J ∈ J ah and A ∈ Aah such that u = eJ+A}.

The groups UJ , where J is any p−Schatten ideal of B(H), were studied in

[2].

It can be proved that the previous unitary sets satisfy the following prop-

erties:

(1) UJ = {eJ ∈ U(H) : J ∈ J ah, ‖J‖ ≤ π}.
(2) UJ ,A is a group, equals

UJ ,A = {u ∈ U(H) :∃ J ∈ J ah, ‖J‖ ≤ π, and

A ∈ Aah such that u = eJeA
}
.

and UJ ,A = UJ UA = UA UJ .
(3) UA ( UJ ,A.

(4) UJ ( UJ ,A.
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(5) UJ+A ⊆ UJ ,A.

(6) If u ∈ UJ ,A then u = J ′ + A′, with J ′ ∈ J and A′ ∈ UA.

(7) For every J ∈ J ah and A ∈ Aah there exists J ′ ∈ K(H)ah such that

eJeA = eAeJ
′
.

(8) UJ ( UJ+A

(9) If Aah ∩ J 6= ∅, then

UJ = {u ∈ U(H) : ∃ A ∈ Aah ∩ J such that u− eA ∈ J }.

(10) For every J ∈ J ah and A ∈ Aah sufficiently close to 0, there exist

J ′′ ∈ J ah and A′ ∈ Aah such that

eJeA = eJ
′′+A′ .

(11) For every J1, J2 ∈ J ah and A1, A2 ∈ Aah the following statements

are equivalent:

• eJ1eA1 = eJ2eA2.

• There exists a ∈ Aah ∩ J such that eJ2 = eJ1e−a and eA2 =

eaeA1 = ea+A1.

Property (1) has been proved for p−Schatten ideals in [2] (Remark 3.1) and

for K(H) see Proposition 3.1. Properties (2)-(9) and (11) may be proved in

much the same way as Propositions 3.3, 3.4 and 3.5. Property (10) involves

the B-C-H series expansion log
(
eJeA

)
for the Lie algebra B(H)ah (see the

Preliminaries).

4. Minimal length curves in the orbit of a compact

self-adjoint operator

Consider the unitary Fredholm orbit of a compact operator

b = Diag ({λi}i∈N) ∈ D(K(H)h)

with λi 6= λj for each i 6= j, and the orbit

Ob = {ubu∗ : u ∈ Uk)}.

The isotropy subgroup of c = eK0be−K0 ∈ Ob, with K0 ∈ K(H)ah for the

action Lu · c = ucu∗, with u ∈ Uk, is Ic = {eK0ede−K0 : d ∈ D(K(H)ah)} =

{eeK0de−K0 : d ∈ D(K(H)ah)}. (TOb)c can be identified with the quotient

space K(H)ah/D(K(H)ah) for every c ∈ Ob. The projection to the quotient

K(H)ah/D(K(H)ah) defines a Finsler metric as

‖x‖eK0ede−K0 = ‖[Y ]‖ = inf
D∈D(K(H)ah)

∥∥Y + eK0De−K0
∥∥

for each class [Y ] =
{
Y + eK0De−K0 : D ∈ D(K(H)ah)

}
and x = Y c−cY ∈

(TOb)c. This metric is invariant under the action of LeK for ek ∈ Uk (see [6]).
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This invariance implies that the curve γ : [a, b] → Ob, such that γ(0) = b

and γ̇(0) = x has the same length than β(t) = LeK · γ : [a, b] → Ob and

satisfies β(0) = LeK · b, β̇(0) = LeK · γ̇(0) = LeK · x, for eK ∈ Uk.

Proposition 4.1. Let b = Diag ({λi}i∈N) ∈ D(K(H)) with λi 6= λj for each

i 6= j and Z0 = S0 + D0, with S0 ∈ K(H)ah and D0 ∈ D(B(H)ah). Then

eZ0be−Z0 ∈ Ob.

Proof. Observe that D0 is not necessarily compact. Using Remark 3.2 the

exponential eZ0 = eS0+D0 can be rewritten as

eZ0 = eD0 + S0Ψ(S0, D0).

Then,
(
eD0 + S0Ψ(S0, D0)

)
e−D0 is unitary and S0Ψ(S0, D0)e

−D0 = eD0−D0−
1 + S0Ψ(S0, D0)e

−D0 ∈ K(H) since S0 ∈ K(H). Moreover(
eD0 + S0Ψ(S0, D0)

)
e−D0 − 1 ∈ K(H),

which implies that eS0+D0e−D0 − 1 ∈ K(H). Therefore, by Proposition 3 in

[6] there exists K ∈ K(H)ah such that

eS0+D0e−D0 = eK , and therefore eS0+D0 = eKeD0 .

Then

eZ0be−Z0 = eS0+D0be−S0−D0 = eKeD0be−D0e−K = eKbe−K ∈ Ob.

�

Theorem 4.2. Let Z0 = S0 +D0 such that S0 ∈ K(H)ah, D0 ∈ D(B(H)ah)

and b = Diag ({λi}i∈N) ∈ D(K(H)) with λi 6= λj for each i 6= j, and

γ(t) = etZ0be−tZ0 , ∀ t ∈ R. Then,

a) γ(t) ∈ Ob, ∀ t ∈ R, and

b) if Z0 is minimal for D(B(H)ah) (see (1.2) and the Preliminaries)

then γ :
[
− π

2‖Z0‖ ,
π

2‖Z0‖

]
→ Ob is a minimal length curve on Ob consid-

ering the distance (2.6).

Proof. The assertion of item a) follows directly from Proposition 4.1. Note

that the a) holds even though Z0 may not be compact.

In order to prove b) consider Pb = {ubu∗ : u ∈ U(H)}, then by Theorem

II in [8], since Z0 is minimal, the curve γ has minimal length over all the

smooth curves in Pb that join γ(0) = b and γ(t), with |t| ≤ π
2‖Z0‖ . Since

clearly Ob ⊆ Pb, then for each t0 ∈
[
− π

2‖Z0‖ ,
π

2‖Z0‖

]
follows that γ is minimal

in Ob, that is

L(γ) = dist(b, γ(t0)),
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where dist(b, γ(t0)) is the rectifiable distance between b and γ(t0) defined in

(2.6) of the Preliminaries. �

Remark 4.3. Recall that for every S0 there always exists a minimal Z0 ∈
B(H)ah as that mentioned in Theorem 4.2 although it may not be compact

(see [8], [5]).

Proposition 4.4. If b = Diag ({λi}i∈N) ∈ D(K(H)) with λi 6= λj for each

i 6= j, then Ob = OUk,db and OUk+d

b ⊆ Ob.

Proof. Since b is diagonal and eKeDbe−De−K = eKbe−K follows that Ob =

OUk,db . The inclusion OUk+d

b ⊆ Ob is trivial because b is diagonal and Uk,d ⊃
Uk+d (see (3) in Proposition 3.4). �

Remark 4.5. Under the same assumptions of Proposition 4.4, if c ∈ Ob
the following identifications can be made

(TOb)c ∼= (TUk)1/(TIb)1 = K(H)ah/D(K(H)ah)

and

(TUk,d)1/(TIb)1 ∼=
(
K(H)ah +D (B (H))ah

)
/D (B (H))ah

∼= K(H)ah/D (B (H))ah .

Moreover the norm on each quotient coincides on every class since for K ∈
K(H)ah holds ‖[K]‖ = infd∈D(K(H)ah) ‖K+d‖ = infD∈D(B(H))ah ‖K+D‖ (see

for example Proposition 5 in [5]). Therefore the Finsler metrics defined by

the subgroups Uk and Uk,d coincide on Ob.

Let c = LeK0 · b = eK0be−K0 ∈ Ob (for K0 ∈ K(H)ah) and x ∈ T (Ob)c.
Then there always exists a vector zc = LeK0 ·Z0, with zcc− zcc = x minimal

for {F ∈ B(H)ah : Fc− cF = 0} = {F ∈ B(H)ah : F = eK0De−K0 , for D ∈
D (B (H))ah} such that Z0 is minimal for D (B (H))ah as in Theorem 4.2 b)

and Remark 4.3. That is,

‖x‖c = ‖[zc]‖c = inf
F∈B(H)ah∩{c}′

‖zc + F‖

= inf
D∈D(B(H))ah

‖eK0Z0e
−K0 + eK0De−K0‖

= inf
D∈D(B(H))ah

‖Z0 +D‖ = ‖[Z0]‖

This equality and the left invariance of the action LeK imply that the curve

β(t) = etzcce−tzc

for t ∈ [− π
2‖zc‖ ,

π
2‖zc‖ ], satisfies β(0) = c, β̇(0) = x = zcc−czc and L(β|[a,b]) =

L(γ|[a,b]) for the curve γ mentioned in Theorem 4.2 and every [a, b] ⊂
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[− π
2‖zc‖ ,

π
2‖zc‖ ]. The previous comments and results allow us to prove the

following.

Corollary 4.6. Let b = Diag ({λi}i∈N) ∈ D(K(H)) with λi 6= λj for each

i 6= j, c = eK0be−K0 ∈ Ob, with K0 ∈ K(H)ah, and x ∈ T (Ob)c. Then there

exists Z0 ∈ B(H)ah minimal for D (B (H))ah such that β(t) = etzcce−tzc ∈ Ob
for all t ∈ R, zc = eK0Z0e

−K0 and x = LeK0 · (Z0b − bZ0). Moreover,

β : [− π
2‖zc‖ ,

π
2‖zc‖ ]→ Ob is a minimal length curve in Ob such that β(0) = c,

β̇(0) = x considering the distance (2.6).

Proof. Given x ∈ T (Ob)c we can choose Z0 ∈ K(H)ah, such that Z0b −
bZ0 = Le−K0 · x ∈ T (Ob)b and that satisfies ‖Z0‖ = infD∈D(B(H))ah ‖Z0 +D‖
as in Theorem 4.2 and Remark 4.3. Z0 is minimal for D (B (H))ah and

therefore Theorem 4.2 b) applies and γ(t) = etZ0be−tZ0 is a short curve for

t ∈ [− π
2‖Z0‖ ,

π
2‖Z0‖ ]. Direct calculations show that x = LeK0 · (Z0b − bZ0) =

(LeK0 · Z0)(LeK0 · b)− (LeK0 · b)(LeK0 · Z0). If zc = LeK0 · Z0 = eK0Z0e
−K0 it

is apparent that if β(t) = etzcce−tzc , for t ∈ R and c = LeK0 · b, then β(0) = c

and β̇(0) = zcc− czc = LeK0 · (Z0b− bZ0) = x

Similar considerations as those in Proposition 4.1 using that

β(t) = eK0etZ0e−K0eK0beK0e−K0e−tZ0e−K0 = LeK0

(
etZ0be−tZ0

)
= LeK0 (γ(t))

imply that β(t) ∈ Ob for all t ∈ R.

Standard arguments of homogeneous spaces (invariance of the Finsler

metric) imply that β is a curve of minimal length when is defined in the

interval [− π
2‖zc‖ ,

π
2‖zc‖ ] = [− π

2‖Z0‖ ,
π

2‖Z0‖ ] as γ is. �

Remark 4.7. Theorem 4.2, Remark 4.5 and Corollary 4.6 allow us to de-

scribe short curves β in Ob with initial condition β(0) = c even for velocity

vectors x ∈ T (Ob)c that do not have a minimal compact lifting Z0. Thus

Uk is an example of a group whose action on Ob has short curves that

need not to be described necessarily with minimal vectors F that belong to

{F ∈ B(H)ah : Fc − cF = 0}. Nevertheless there exists another group Uk,d
acting on Ob such that its b-orbit coincides with that of Uk, defines the same

Finsler metric on it and where every short curve can be described by means

of a minimal lifting.

The previous geometric properties allow the following results relating the

quotient norm ‖[K]‖ = inf
D∈D(B(H))ah

‖K+D‖ of two anti-Hermitian compact

operators.
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Proposition 4.8. Let K1, K2 ∈ K(H)ah and D1, D2 ∈ D(B(H)ah) such that

etK1eD1 = etK2eD2 for all t ∈ [0, 1]. Then,

‖[K1]‖ = ‖[K2]‖ .

Proof. Let b = Diag ({λi}i∈N) ∈ D(K(H)h) with λi 6= λj for each i 6= j. The

equality etK1eD1 = etK2eD2 implies that

etK1be−tK1 = etK2be−tK2 ,

for all t ∈ [0, 1]. If we consider α, β : [0, 1]→ Ob, defined by

β(t) = etK1be−tK1 and α(t) = etK2be−tK2 ,

then

L(β) = L(α)⇒
∫ 1

0

‖β′(t)‖β(t) dt = L(α) =

∫ 1

0

‖α′(t)‖α(t) dt

⇒ ‖[K1]‖ = ‖[K2]‖ .

This concludes the proof. �

Proposition 4.9. Let K ∈ K(H)ah and D ∈ D(B(H)ah) such that K + D

is minimal and ‖K +D‖ < π
2
. Then, if K ′ ∈ K(H)ah is such that eK+D =

eK
′
eD the inequality

‖[K]‖ ≤ ‖[K ′]‖

holds.

Proof. Let b = Diag ({λi}i∈N) ∈ D(B(H)h) with λi 6= λj for each i 6= j, and

consider α, β : [0, 1]→ Ob, defined by

β(t) = et(K+D)be−t(K+D) and α(t) = etK
′
be−tK

′
.

Observe that since eK+D = eK
′
eD then β(0) = α(0) and β(1) = α(1).

But β has minimal length between all rectifiable unitary curves that join

b with β(1) = eK+Dbe−(K+D) = eK
′
be−K

′
= α(1) (see Corollary 4.6 and [8]).

Therefore

L(β) ≤ L(α)

⇒
∫ 1

0

‖β′(t)‖β(t) dt = ‖Kb− bK‖b = ‖[K]‖

≤
∫ 1

0

‖α′(t)‖α(t) dt = ‖K ′b− bK ′‖b = ‖[K ′]‖ .

�
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