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Abstract—Two different methods for the stability and bifurca-

tion analyses of neutral delay differential equations are presented.

The first one relies on classical techniques and it is oriented to

the study of the roots of the characteristic equation, which is a

transcendental one. It provides a straightforward test to obtain

the stability chart in the parameter space of the studied system.

The second method uses a frequency-domain approach, based

on the control theory, to determine the stability and dynamic

bifurcations, and also providing approximations for the smooth

oscillations appearing when the system loses its stability.

Index Terms—neutral delay differential equations, exponential

polynomial equations, nonlinear systems, stability, oscillatory

solutions.

I. INTRODUCTION

Among the most used equations for modeling systems in
engineering and other areas, delay differential equations are
of special interest, because they are useful to represent time
delays in transmission lines, control loops, switching times,
sensing and processing information, etc. There are three main
types of delay equations: the retarded type, the neutral type
and the advanced type [1]. In the first kind, the present rate of
change of the system depends on the present and past values
of the states, that is to say, the time delay does not appear
in the highest-order derivative in the differential equation. In
the second kind, the rate of change of the system at present
and past time values depends on present and past values of
the states. Thus, neutral equations have time delays appearing
in the highest-order derivative. At last, in equations of the
advanced type, the rate of change of the system at the present
time depends on present and future values of the states. More
details about the classification of delay equations can be found
in [1]. Since equations of retarded type have been widely
studied in relation with engineering applications [2], [3], this
article focus on the study of equations of the neutral type. Even
if the characteristic equation is an exponential polynomial in
all delay equations, the stability analysis may be different in
each case. For equations of the retarded type, there are classic
results showing that the stability changes may only occur when
one or more eigenvalues cross the imaginary axis, and there is
always a finite number of roots of the characteristic equation
in any vertical strip of the complex plane. But this is not

generally true for equations of the neutral type. Actually, in
neutral delay differential equations (NDDEs), the stability can
be lost even without the crossing of characteristic roots through
the imaginary axis, because those roots can accumulate on
that axis. Those differences seem not to be well known in
the engineering community though there are many research
works using NDDEs. A numerical method for the stability
analysis of NDDEs, which used a special function called the
W-Lambert function, was proposed in [4]. The stability and
appearance of oscillations in a neural network model described
by an NDDE has been studied in [5]. NDDEs arise naturally
in some models of transmission lines, described by distributed
parameters. For example, an alternative configuration of the
Chua’s oscillator with a lossless transmission line, described
by an NDDE, was investigated in [6]. The Hopf bifurcation
and the period-doubling route to chaos was analyzed and
observed experimentally in a radio-frequency transmission line
in [7], where the system model was also an NDDE. In [8],
the authors analyzed an NDDE related with the substructuring
method, which is a hybrid (empirical and theoretical) tool to
analyze very complex dynamical systems.

This article addresses the study of NDDEs, particularly the
stability of their equilibrium points and also the appearance
of periodic solutions, when these equilibrium points lose their
stability. After linearizing the equation around an equilibrium
point, a characteristic equation given by an exponential poly-
nomial is obtained. The investigation of the location of its roots
is not a simple task. However, with the aid of some classic
results, some conditions on the parameters can be deduced to
ensure the stability of the equilibrium point. This viewpoint
gives place to the first approach presented in this work. In the
other hand, an alternative method emerges after representing
the system as a feedback control loop, and performing a
frequency-domain stability analysis. In this way, the original
formulation presented in [9], [10] can be applied after minor
modifications to study NDDEs, where the focus is on the
appearance of smooth oscillations, when the equilibrium points
become unstable after the variation of a system parameter
(which is known as Hopf bifurcation). This is the second
approach developed in this article.
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This paper is organized as follows. In Section II, a stability
characterization based on classical techniques is presented
with its proof. In Section III, the frequency-domain approach
is described, an its application to NDDE is explained through
an example. Finally, the conclusions are given in Section IV.

II. STABILITY ANALYSIS USING CLASSICAL TECHNIQUES

This section deals with the analysis of certain dynamical
aspects of the following NDDE:

ẍ(t) + �x(t) = ↵ẍ(t� ⌧) + �ẍ

2
(t� ⌧), (1)

where ẍ = d

2
x/dt

2
, � > 0, ↵, � 6= 0 and ⌧ > 0. System (1)

can be thought as an harmonic oscillator with nonlinear
delayed feedback, and its structure is similar to others analyzed
in [11]. The stability of the equilibrium point bx = 0 of (1) is
studied by the following linearized equation, also considered
in [12]:

ẍ(t) + �x(t) = ↵ẍ(t� ⌧). (2)

Equation (2) with three parameters (counting the delay ⌧ ), is
explored with the aid of different techniques to discover the
behavior of its solutions, under parameter variations.

To analyze the stability of the equilibrium point of (2), it
is necessary to find the location of the roots of a certain ex-
ponential polynomial. In this regard, the following definitions
and results will be used.

Definition 1: Let p(x, y) be a two variable polynomial. Then
P (z) = p(z, e

z
) =

P
m,n amne

zm
z

n is an exponential
polynomial.

Definition 2: Let P (z) be an exponential polynomial. The term
arse

zr
z

s is called the principal term of P if ars 6= 0 and, if
for each other term amne

zm
z

n with amn 6= 0, it is satisfied
r > m, s > n, or r = m, s > n, or r > m, s = n.

Remark 1: It can be proved that if an exponential polynomial
P (z) has no principal term, then it has an unbounded number
of zeros with arbitrarily large real part [1], [13], [14] e.g.
P (z) = e

z � z.

The next results [1], [14] are required for the stability
analysis. In the following theorems, consider P = P (z)

be an exponential polynomial with a principal term, where
P (iy) = F (y) + iG(y), y 2 R.

Notation: The expression FG

0 means the product of F and
G

0. So FG

0
(y) = F (y)G

0
(y). Idem for F 0

G.

Theorem 1 If all the zeros of P are located on the left half
plane then all the zeros of F and G are real, alternating and
FG

0
(y)� F

0
G(y) > 0, for all real value y. ⌅

Theorem 2 All the zeros of P are located on the left half
plane if

I) all the roots of F are real and for each of these zeros
the condition F

0
G(y) < 0 is satisfied, or

II) all the roots of G are real and for each of these zeros
the condition FG

0
(y) > 0 is satisfied, or

III) all the roots of F and G are real and alternate and the
inequality FG

0
(y)�F

0
G(y) > 0 is valid for at least one

value of y. ⌅

Remark 2: F (y) and G(y) simultaneously zero with y 6= 0

is equivalent to the existence of a pair of roots of P that are
imaginary pure.

Particularly, for Eqn. (2) the characteristic equation results

r

2
+ � = ↵r

2
e

�r⌧ () e

r⌧
(r

2
+ �)� ↵r

2
= 0.

If z = r⌧ then follows

P (z) = e

z
(z

2
+ �⌧

2
)� ↵z

2
= 0, (3)

and taking z = iy, it is possible to write P (iy) = F (y) +

iG(y), where

F (y) = cos y(�y

2
+ �⌧

2
) + ↵y

2
, (4)

G(y) = sin y(�y

2
+ �⌧

2
).

The solution of F (y) = G(y) = 0 allows to find the critical
stability curves in the parameter space. If the solutions of
P (iy) = 0 are not zero, they come in complex-conjugate
pairs, and the stability loss of the equilibrium point leads to
the appearance of smooth oscillations in (1). This phenomenon
is called Hopf bifurcation in the context of nonlinear systems.
Thus, the critical stability curves obtained from (4) will be
called the Hopf bifurcation curves of (1), and they can be
expressed as

↵k(⌧) = (�1)

k

✓
1� �⌧

2

k

2
⇡

2

◆
, k 2 N. (5)

By Theorem 2 II), if FG

0
(y) > 0 for any root of G, then the

equilibrium results asymptotically stable. From now on, for
simplicity, it is fixed � = 1.

Due to (4), the roots of G are

yk = k⇡, ŷ1,2 = ±⌧. (6)

Moreover G0
(y) = cos y(�y

2
+⌧

2
)�2y sin y. To be able to

use Theorem 2 II), some conditions must be satisfied, namely:
1) F and G cannot share any of their roots, i.e.

F (yk) = (�1)

k
(�y

2
k + ⌧

2
) + ↵y

2
k 6= 0, (7)

F (ŷ1,2) = ↵ŷ

2
1,2 = ↵⌧

2 6= 0 () ↵ 6= 0.

2) The roots of G must be simple. In this regard,

G

0
(yk) = (�1)

k
(�y

2
k + ⌧

2
) 6= 0 , y

2
k 6= ⌧

2

, ⌧ 6= k⇡, k 2 N, (8)
G

0
(ŷ1,2) = �2ŷ1,2 sin ŷ1,2 = �2⌧ sin ⌧ 6= 0 ,

⌧ 6= k⇡, k 2 N.

Then, the following outcome, which is the main result of this
section, can be proved:

Theorem 3 Consider (3) and (4) with � = 1, ⌧ > 0,↵ 6= 0,

together with yk, k 2 N0 and ŷ1,2 given by (6). Assume that
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the parameters values satisfy (7) and (8). All the roots of P

lie on the left half plane if and only if the following parameter
conditions are fulfilled:

I) For 0 < ⌧ < y1, it must be

↵ < 0 and ↵ > �1 +

⌧

2

⇡

2
.

II) For yk < ⌧ < yk+1, k 2 N, it is required:
a) If k is odd, then

↵ > 0, ↵ < �1 +

⌧

2

k

2
⇡

2
and ↵ < 1� ⌧

2

(k + 1)

2
⇡

2
.

b) If k is even, then

↵ < 0, ↵ > 1� ⌧

2

k

2
⇡

2
and ↵ > �1 +

⌧

2

(k+1)

2
⇡

2
.

Proof: ) (Necessary condition)
This part is proved using Theorem 1. The roots of G and

F should be real and this statement can be satisfied under
counting them on certain intervals of the line. It is easy to
prove that G has always 4k + 2 roots, in an arbitrary interval
[�2k⇡ + ⇡/2, 2k⇡ + ⇡/2], for k arbitrarily large, wherever a
positive ⌧ is placed. Now, consider the roots of F. For the
first case I) let 0 < ⌧ < y1 = ⇡. It will be shown that F

has also 4k + 2 zeros in the interval [�2k⇡, 2k⇡]. As F is
even, one can consider [0, 2k⇡] and look for 2k + 1 roots.
The zeros of F should alternate with the zeros of G (see (6))
according with Theorem 1. So, it results F (0) = ⌧

2
, F (⌧) =

↵⌧

2
, F (⇡) = ⇡

2 � ⌧

2
+ ↵⇡

2, and supposing that they have
different signs, gives ↵ < 0 and ↵ > �1 + ⌧

2
/⇡

2
. Now, it is

considered any subinterval [yj , yj+1], where j � 1.

Set j odd, then F (yj) = y

2
j � ⌧

2
+ ↵y

2
j and F (yj+1) =

�y

2
j+1+⌧

2
+↵y

2
j+1. Clearly F (yj+1) < 0 and F (yj) > 0 due

to ↵ > �1 + ⌧

2
/⇡

2
> �1 + ⌧

2
/(j

2
⇡

2
). So, there is one root

of F in [yj , yj+1]. The same result can be shown analogously
for j even. Then F has 2k + 1 roots in [0, 2k⇡] and 4k + 2

in [�2k⇡, 2k⇡] and the proof results now complete for this
case. The situations considered in part II) can be demonstrated
fitting this argument.

( (Sufficiency condition)
In order to apply Theorem 2 II), it is necessary to check

that FG

0
(y) > 0 for each y, an arbitrary root of G (see (6)).

I) The sign of ↵ follows from the requirement of FG

0
(ŷi) >

0, i = 1, 2. The condition ↵ < 0 results from the condition
FG

0
1(y0) > 0. The main inequality is established by setting

FG

0
(y1) > 0. Then, it can be shown that one can satisfy

F1G
0
1(yk) > 0, k � 2, by holding both inequalities and con-

sidering separately the cases k odd or even. Hence, the detailed
steps of the proof of this part are shown. Let 0 < ⌧ < ⇡ = y1.

Considering the roots of G (6), the sign of FG

0 gives
1) For ŷ1,2 = ±⌧, one has FG

0
(ŷ1,2) = �2↵⌧

3
sin ⌧ > 0

if ↵ < 0 (due to 0 < ⌧ < ⇡ = y1).
2) FG

0
(0) = ⌧

4
> 0. It follows that

FG

0
(⇡) = (⇡

2�⌧

2
+↵⇡

2
)(⇡

2 � ⌧

2
)| {z }

>0

> 0 ) ↵ > �1+

⌧

2

⇡

2
.

Now, it is necessary to prove that if 0 < ⌧ < ⇡ = y1

then FG

0
(yk) > 0, k � 2, k 2 N, under ↵ < 0 and ↵ >

�1 + ⌧

2
/⇡

2.
Consider yk = k⇡, with k odd. One has

FG

0
(k⇡) = (k

2
⇡

2 � ⌧

2
+ ↵k

2
⇡

2
)(k

2
⇡

2�⌧

2
)| {z }

>0

> 0

, ↵ > �1 + ⌧

2
/(k

2
⇡

2
),

which holds if ↵ > �1 + ⌧

2
/⇡

2
.

Now, consider yk = k⇡, with k even. As

FG

0
(k⇡) = (�k

2
⇡

2
+ ⌧

2
+ ↵k

2
⇡

2
)(�k

2
⇡

2
+ ⌧

2
)| {z }

<0

> 0

, ↵ < 1� ⌧

2
/(k

2
⇡

2
),

that holds if ↵ < 0.

II) Again, the sign of ↵ is established from FG

0
(ŷi) >

0, i = 1, 2, according to k being odd or even. The first two
inequalities in a) and b) are deduced imposing FG

0
(yk) > 0

and FG

0
(yk+1) > 0, when k is odd or even. These conditions

result sufficient to guarantee FG

0
(yi) > 0, where i < k or

i > k+1. Finally, to show this last it is necessary to consider
the four different cases which result for i odd or even.

It still remains to test that FG

0
(yk) > 0 for each yk, a root

of G where yk < 0. Due to FG

0 is an even function, i.e.,
FG

0
(�yk) = FG

0
(yk), now the proof is complete.⌅

The stability regions for system (2), attained by Theorem 3
are shown in Figure 1. Notice that for |↵| = 1, if ⌧ ! 0

+,
there is an accumulation of Hopf bifurcation points (only the
Hopf curves up to k = 7 are shown in the diagram). It indicates
that there are infinitely many solutions of P (iy) = 0 for those
parameter values. This fact can also be seen from (3) by letting
⌧ ! 0

+ and |↵| = 1 therein. It results in P (z) = z

2
(e

z±1) =

0, which has an infinite number of solutions on the imaginary
axis. As mentioned in Section I, this is a distinctive feature of
NDDEs.
Remark 3: It is also possible to consider ⌧ as a constant. In
this situation the stability regions can be set for the parameters
↵ and � and the restrictions result linear. This approach has
been considered in [12]. The outcomes presented in this paper
agree with the results therein.
Remark 4: Notice that the results obtained in this section are
valid not only for system (1), but also for any system whose
linearised equation is given by (2).

III. STABILITY AND BIFURCATION ANALYSIS USING A
FREQUENCY-DOMAIN APPROACH

In this section, the frequency-domain approach to the Hopf
bifurcation [9], [10] is considered in order to determine
the stability and the onset of oscillations in NDDEs. The
procedure is introduced directly by considering as example,
the equation proposed in [15], given by:

ẋ(t) = aẋ(t� 1) + bx(t� 1) + cẋ

3
(t� 1), (9)

where x, a, b, c 2 R. By applying the Laplace transform in
both sides, it yields

L{ẋ(t)� bx(t� 1)} = L
�
aẋ(t� 1) + cẋ

3
(t� 1)

 
,
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Fig. 1. Some stability regions for the equilibria of model (2) given by
Theorem 3. The blue area refers to the region defined in I) and, the yellow,
red and magenta areas correspond to part II) a, when k = 1, 3, 5 and finally,
the green, cyan and black (only a portion), refer to part II) b, with k = 2, 4, 6.
The curved frontiers of the coloured zones are Hopf bifurcation curves ↵k .

which gives

L{x(t)} = X(s) =

1

s� be

�s
L
�
aẋ(t� 1) + cẋ

3
(t� 1)

 
,

so one can write (9) as a linear system G with a nonlinear
feedback g which are given, respectively, by

G(s) =

1

s� be

�s
and g(y) = �ay � cy

3
.

Note, however, that the output of the linear system should
be y(t) = �ẋ(t � 1) instead of �x(t) as in the standard
formulation of the frequency-domain approach (see [10]),
so an additional block must be added to the forward path,
as shown in Fig. 2. Thus the complete transfer function
for the linear feedforward path is defined conveniently as
G

⇤
(s) = G(s)se

�s. The equilibrium points by satisfy the
equation G

⇤
(0)g(by) = �by, which gives the solution by = 0.

In order to study the stability of this equilibrium point, it
is computed the linearization of g around by = 0, given by
J = dg/dy|y=0 = �a. Thus one should consider the so-called
characteristic function defined by

�(s) = G

⇤
(s)J =

�ase

�s

s� be

�s
, (10)

Fig. 2. Block diagram for system (9).

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5
Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
Ax

is

-2 -1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5
Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
Ax

is

Fig. 3. Nyquist diagrams for system (9), with a = 0.9. Left: b = 0.5. Right:
b = �0.5.

which represents the linear loop gain of the system shown in
Fig. 2. The function (10) can be used to analyze the stability
and bifurcations of the equilibrium point when the Nyquist
stability criterion is applied. As in Section II, it is possible to
formulate a new result using the time domain formulation, i.e.,
the adaptation of Theorem 3 to model (9). It can be proved
that the conditions �y0

p
1� a

2
< b < 0 where �1 < a < 1

and y0 = arccos a, y0 2 (0,⇡) are necessary and sufficient to
guarantee the asymptotic stability of the equilibrium.

In the following, a 6= 0 is supposed in order to the direct
transfer function be well defined. Particularly, the Hopf bifur-
cation phenomena introduced in Section II, is detected in this
frequency-domain framework when the condition �(i!0) =

�1 is satisfied with !0 6= 0. This condition, applied to (10)
gives ai!e�i!

= i!�be

�i! , or equivalently b+ia! = i!e

i! ,
which leads to the following equations after taking real and
imaginary parts:

b = �! sin! (11a)
a! = ! cos!. (11b)

System above has a solution ! = 0 with b = 0, indicating the
presence of a so-called static bifurcation for this parameter
value. Generally, a static bifurcation indicates the interaction
between more than one equilibrium point, but in this example,
there are no more of such points.

On the other hand, (11b) gives |a|  1 if ! 6= 0. If |a| = 1,
then ! = k⇡, k 2 N and it gives again b = 0. Thus, discarding
b = 0 and |a| = 1, it yields

!0 =

|b|p
1� a

2
, (b 6= 0, |a| < 1). (12)

In addition, �(i!) can be written as

�(i!) =

�a!

2
cos! + ia!(b+ ! sin!)

|i! � be

�i!|2 ,

thus if (11a) holds, one has Im� = 0. But (11a) has infinitely
many solutions for b 6= 0, and it means that � intersects the
real axis infinitely many times. Figure 3 shows two Nyquist
diagrams (a = 0.9): one for b = 0.5 (left) and the other for
b = �0.5 (right). The plot on the right shows the occurrence
of a Hopf bifurcation, since the geometrical locus encloses the
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point �1. Also, if |a| = 1, then the characteristic locus passes
through the critical point �1 an infinite number of times. Note
that for |a| = 1 there is an accumulation of roots on the
imaginary axis in the time-domain counterpart, as happened
for the system studied in Section II.

Since (9) has a nonlinearity, the Hopf bifurcation theorem
provides a formula, called curvature coefficient, to determine
the direction and stability of oscillations. An approximation of
the limit cycles following the method [10] with two harmonics,
gives that the zero and second harmonic terms vanish, since
D

2
g = d

2
g/dy

2|by=0 = 0. Also, as the system is SISO (single
input - single output), the left and right eigenvectors u and v

of G

⇤
(s)J are scalar and they can be chosen as one. Thus,

the amplitude of the fundamental frequency component is
proportional to the following quantity, provided in a simplified
form using the fact that D2

g = 0:

p1(!) =
1

8

d

3
g

dy

3

����
by=0

v =

1

8

(�6c) v = �3c

4

,

and then one obtains an auxiliar complex scalar

⇠1(!) = �G

⇤
(!)p1(!) =

3c

4

i!e

�i!

(i! � be

�i!
)

, (13)

which helps in a graphical interpretation presented in short.
Using the fact that u = v = 1, the expression of the above
mentioned curvature coefficient is reduced to

�1 = Re
�
⇠1(i!0)[G

⇤0
(i!0)J ]

�1
 
, (14)

where Re(·) is the real part of a complex number and
G

⇤0
(i!0) = dG

⇤
(s)/ds|s=i!0 . The sign of this coefficient de-

termines if the Hopf bifurcation is supercritical (the oscillation
appears beyond the critical parameter value) or subcritical (the
periodic solution emerges before the critical value). Replacing
the expressions of G⇤0

(i!0) and ⇠1(!0) into (14), one obtains

�1 =

3c

4a

Re
�
i!0(i!0 � be

�i!0
)[be

�i!0 � !

2
0 ]

�1
 
. (15)

The expression above can be further simplified by using the
critical bifurcation condition �(i!0) = �1, which is equivalent
to i!0� be

�i!0
= ai!0e

�i!0 . Using this into (15), after some
algebraic manipulation, gives

�1 = �3c!

2
0

4

⇢
b� !

2
0 cos!0

|� !

2
0e

i!0
+ b|2

�
.

Finally, replacing !0 from (12) and cos!0 = a from (11b),
expression above can be further simplified to

�1 = � 3c!

2
0b

4(1� a

2
)

( �
1� a

2 � ab

�

|� !

2
0e

i!0
+ b|2

)
. (16)

As 1 � a

2
> 0, the Hopf bifurcation will be supercritical if

cb[1� a

2 � ab] > 0 and subcritical if cb[1� a

2 � ab] < 0.

The Hopf bifurcation curves obtained from (11a) and (11b)
are shown in Fig. 4. Each portion of the curve corresponds to
(k� 1)⇡ < ! < k⇡, and they are shown only for k up to six.

Fig. 4. Hopf bifurcation curves. Supercritical bifurcations are shown in red
and subcritical ones are shown in green. Each portion corresponds to (k �
1)⇡ < ! < k⇡, and the shaded area corresponds to a stable equilibrium.

Red color indicates supercritical Hopf bifurcations, and green
color indicates subcritical Hopf bifurcations. In each portion,
there is a point in which the curvature coefficient vanishes.
For k = 1, the point for which �1 = 0 coincides with the one
found in [15] using a different method (see Table 3.1 therein).

On the other hand, the amplitude and frequency of the
periodic solutions can be obtained approximately by solving
the equation

�(i!) = �1 + ⇠1(!)✓
2
, (17)

which can be interpreted graphically as the intersection, in the
complex plane, between the characteristic function � and the
half-line starting from �1, and pointing to the direction of
⇠1. This half-line is parametrized in ✓

2, where ✓ is a measure
of the amplitude of the periodic solution. By replacing (10)
and (13) into (17), it is simple to obtain �ai! = �i!e

i!
+

b+

3
4ci!✓

2
, leading to the system

b = �! sin!, (18a)
a = cos! � 3

4c✓
2
. (18b)

For each value of b, the intersecting frequency b! can be
obtained from (18a). Then the amplitude is computed us-
ing (18b). For example, with c > 0, it gives

✓ =

2p
3c

p
cos b! � a.

The periodic solution in terms of the output of the linear
subsystem is then computed as y(t) = Re(✓eib!t

) = ✓ cos(b!t),
but given the relationship y(t) = �ẋ(t � 1), it follows that

x(t) = �
tR

0
y(u+1)du, so, by ignoring the time shift (because

one is considering the long-term behavior), it is found that x(t)
can be expressed as

x(t) = � ✓

b! sin(b!t) = �2

b!
p
3c

p
cos b! � a sin(b!t) (c > 0).

Next, the obtained approximation will be checked by assigning
particular parameter values, and letting one free bifurcation
parameter.

Case 1

Consider, as a particular case, a = 1/

p
2, c = 0.1 and let
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b to be the bifurcation parameter. The critical values of b

and ! are found from (11a) and (11b) as b0 = �⇡/(4

p
2),

and !0 = ⇡/4. If b is increased from this critical value, a
periodic solution is found. Figure 5 shows the approximation
of the branch of periodic solutions. Notice that the Hopf bi-
furcation is subcritical with unstable periodic solutions. Then,
they cannot be observed by standard numerical simulations.
However, the obtained amplitude values are slightly higher
than those shown in [15] for the same branch using a different
methodology.

Fig. 5. Approximation of the branch of periodic solutions emerging from the
Hopf point (a, b) = (1/

p
2,�⇡/(4

p
2)).

Case 2

Consider now a = �1/

p
2 (obtained for !0 = 3⇡/4), c = 0.1

and let b to be again the bifurcation parameter. The critical
value of b is found from (11a) to be b0 = �3⇡/(4

p
2). Now

b is decreased from this critical value, taking into account
that the Hopf bifurcation is supercritical in this case. Figure 6
shows the comparison between the amplitude of the emerging
stable limit cycles found with numerical simulations and those
predicted by the graphical Hopf theorem. It can be seen that
the latter can detect the proximity of a saddle-node bifurcation
of limit cycles.

Fig. 6. Approximation of the branch of periodic solutions emerging from
the Hopf point (a, b) = (�1/

p
2,�3⇡/(4

p
2)) (black marks) versus the

amplitude computed through numerical simulations (red marks).

Remark 6: The nonlinear system (1) can be also analyzed
by using the frequency-domain approach. In so doing, one
possible representation is given by G

⇤
(s) =

s2e�s⌧

s2+� and
g(y) = �↵y + �y

2. Thus, the stability conditions for the

equilibrium point obtained in Section II, can be also derived
by applying the Nyquist stability criterion to the characteristic
function �(s) = �↵s

2
e

�s⌧
/(s

2
+ �).

IV. CONCLUSION AND FUTURE WORK

In this work, two approaches were presented for the stability
and bifurcation analyses of two particular NDDEs, with the
intention of extending those results to more general cases in
future developments. Based on Theorems 1 and 2, similar
results to Theorem 3 can be set for more general NDDEs,
performing a similar analysis as in the proof of Theorem 3.
Also, it seems to be straightforward to extend the second
approach to other systems. Moreover, from the periodic branch
shown in Fig. 6, it is glimpsed the appearance of folds of limit
cycles, which is expected given the presence of points in which
the curvature coefficient vanishes. The fold of limit cycles is a
global phenomena, but it can still be recovered using higher-
order approximations of the periodic solution, which is left for
future work.
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