Patagonia-Antarctica Early Paleozoic conjugate margins: Cambrian synsedimentary silicic magmatism, U-Pb dating of K-bentonites, and related volcanic rocks

Pablo D. González a,*, Ana M. Sato b, Maximiliano Naipauer c, Ricardo Varela b, Miguel Basei d, Kei Sato d, Eduardo J. Llambías b,1, Farid Chemale e, Antonio Castro Dorado f

a Instituto de Investigación en Paleobiología y Geología, UNRN-CONICET, Av. Julio A. Roca 1242, R 8332 EXZ, General Roca, Río Negro, Argentina
b Centro de Investigaciones Geológicas, UNLP-CONICET, Diagonal 113 N° 275, B 1904 DPK, La Plata, Buenos Aires, Argentina
c Instituto de Estudios Andinos “Don Pablo Groeber”, UBA-CONICET, Guáiraldes 2160, Ciudad Universitaria, Pabellón II, C 1428 EHA, Buenos Aires, Argentina
d Centro de Pesquisas Geocronológicas, Instituto de Geociências, USP, Rua do Lago 562, CEP 05508-080 São Paulo, SP, Brazil
e GEO-Departamento de Geología Geral e Aplicada, Instituto de Geociências, Universidade de Brasília, ICC-Centro, Campus Universitário Darcy Ribeiro Asa Norte, CEP 70910-900, Brazil
f Departamento de Geología, Universidad de Huelva, Campus del Carmen, 21071 Huelva, Spain

A R T I C L E I N F O

Article history:
Received 23 February 2018
Received in revised form 29 May 2018
Accepted 29 May 2018
Available online 20 July 2018

Handling Editor: J.G. Meert

Keywords:
K-bentonite
U-Pb dating
Cambrian magmatism
Patagonia
Antarctica
Gondwana

A B S T R A C T

This study describes the stratigraphic features, petrology and geochemistry and geochronology constraints of K-bentonites, ignimbrites and related volcanic rocks interbedded in the marine sedimentary sequence of the El Jagüelito Formation from northern Patagonia basement, southwestern Gondwana margin (41°33′S-65°15′W, South America). Six SHRIMP and ICP-MS U-Pb zircon ages from pyroclastic and volcaniclastic sedimentary rocks indicate two stages of synsedimentary volcanism at c. 530 and c. 515 Ma which constrain the whole volcano-sedimentary pile to Early-Middle Cambrian. Distal volcanic ash fall deposits of K-bentonites and proximal pyroclastic flows of ignimbrites were erupted from three subaerial to subaqueous eruptive centers and are associated with volcanicogenic facies and sub-volcanic intrusive equivalents. The volcanic rocks were deposited synchronously with on-going dynamic siliciclastic sedimentation into an actively subsiding basin.

Dacitic K-bentonites and high-silica rhyolitic ignimbrites belong to the same high-K calc-alkaline/shoshonitic magma series and have a similar peraluminous signature. Their HFSE patterns with relative depletion in Nb, Sr, P, and Ti and the LREE-enriched patterns with a negative Eu anomaly indicate characteristics of subduction-related magmas associated with active continental arc magmatism. The geochemical discrimination diagrams together with geological features suggest an extensional tectonic setting for K-rich magmas within the overall convergent-margin system. Silicic, more potassic magmas with the inherited subduction-related character of the El Jagüelito Formation erupted on a back-arc basin. Their volcanic rocks are products of a mixture of fractionated mafic magmas and partial crustal melts. The integration of the Cambrian synsedimentary explosive volcanism of the El Jagüelito Formation with coeval magmatism of northern Patagonia led the interpretation to the continental scale of the paleo-Pacific margin of Gondwana by Early Paleozoic. The El Jagüelito Formation has provided consistent lithological, stratigraphic, geochemical and geochronological arguments to assess continental comparisons and a paleogeographic reconstruction between the eastern North Patagonian Massif and East Antarctica that fit in well the hypothesis that the northern Patagonia basement once occupied a position adjacent to East Antarctica. A series of geodynamic stages is proposed that allow for providing a Cambrian framework for understanding the magmatic arc-back arc system modified by episodic pulses of extension associated with slab-roll back which terminated in detachment of northern Patagonia from the East Antarctica continental margin by Late Cambrian. The several lines of geological evidence discussed in this paper point to a parautochthonous origin of the eastern North Patagonian Massif as an outboard assemblage that represents the conjugate margin of the Pensacola-Queen Maud-Ellsworth-Whitmore Mountains of Antarctica.

© 2018 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
1. Introduction

The assembly of Gondwana supercontinent was mostly complete by the Early Paleozoic through the closure of oceans and development of orogenic belts, such as the Mozambique, Brasiliano-Pampeano, Pan African and Kuunga belts (e.g. Meert, 2003; Veevers, 2004; Jacobs and Thomas, 2004; Collins and Pisarevsky, 2005; Trindade et al., 2006; Meert and Liberman, 2008; Tohver et al., 2012, among others). The Terra Australis orogenic belt subsequently formed by convergent plate interactions extends along the Pacific-lapetus margin of East and West Gondwana between Australia and South America (Cawood, 2005). Continental margin sequences occur along the East and West Gondwana segments of the orogen, outboard of which lie a series of parautochthonous and allochthonous terrains. In southern South America, at the tip of Andean segment of the Terra Australis orogen, accretion of allochthonous terrane may have continued through Ordovician (Cuyania terrane, Ramos et al., 1998; Ramos, 2004), Devonian (Chilenia terrane, Ramos et al., 1986) and even late Paleozoic times (Patagonia terrane, Ramos, 1984, 2008; von Gosen, 2002; Ramos et al., 2004; Fig. 1 A). Although geological, structural and magmatic evidence point to a Late Paleozoic time of Patagonia accretion to South America, Paleozoic paleomagnetic poles suggest that Patagonia did not undergo significant displacements relative to South America since Devonian times (Rapalini, 1998), and thus their collision against the southwestern Gondwana margin should have occurred in pre-Devonian times.

The possible allochthonity of Patagonia has been the subject of more than three decades of discussion following the early proposal of “Patagonia terrane” made by Ramos (1984). Structural, geochronological and geophysical studies, as well as geodynamic analyses and paleogeographic reconstructions, have contributed to the issues of autochthonous or allochthonous, and even parautochthonous origin of Patagonia. Relevant hypotheses considered elsewhere are: (1) the entire Patagonia as autochthonous to Western Gondwana throughout the Paleozoic (Forsythe, 1982; Dalla Salda et al., 1992; Pankhurst et al., 1996)
stantaneous on a geological timescale and thus contemporaneous with and both with Gondwana in the Late Paleozoic (Ramos, 2008; Castillo et al., 2017), (4) paraautochthonous North Patagonian Massif, first rifted from Gondwana in Early to Middle Paleozoic, and then frontally collided in Late Paleozoic (Rapalini et al., 2010; López de Luchi et al., 2010; Martínez Dopico et al., 2011), (5) oblique Late Paleozoic subduction, resulting in indentation and escape tectonics in Northern Patagonia (Gregori et al., 2008), an interpretation that might be conciliated partly with the suggestion of Patagonia as a displaced terrane originating in a hypothetical platform developed between South America, Africa and Antarctica (Huber-Grüngen, 1990; Añeloñaza et al., 2002), and (6) the eastern North Patagonian Massif as the conjugate margin of the Pensacola Mountains in East Antarctica (Ramos and Naipauer, 2014). A common underlying idea in most of these models seems to be that Patagonia was not entirely an exotic terrane to southwestern Gondwana in Early Paleozoic times, as suggested by similar detrital zircon patterns of metasediments, lithological and geochronological correlations (González et al., 2002, 2010; Rapalini et al., 2013; Pankhurst et al., 2014; Greco et al., 2017), and recognition of the Cambrian and Ordovician magmatic arcs with similar TDM model ages which might represent the southern extension of the Pampean and Famatinian orogenic belts of the Sierras Pampeanas respectively (Dalla Salda et al., 1992; Pankhurst et al., 2006, 2014; Garcia et al., 2014, 2015; Greco et al., 2017; Fig. 1 A). However, considering the above available data, the original position of Patagonia in Early Paleozoic paleogeography of the Southwestern Gondwana continent has remained to be elucidated. The first documented finding of archaenosearthy fossils in South America within the northern Patagonia basement belonging to the El Jagüelito Formation opened new insights into the origin and paleogeography of Patagonia within the context of Gondwana assembly in Early Paleozoic (González et al., 2011a). With restricted paleogeographic distributions and limited age (exclusively Cambrian), archaenosearthy fossils are robust provenance markers (Hill, 1972; Rozanov and Debnere, 1974; James and Debnere, 1981; Debnere and Kruse, 1989; Stone and Thomson, 2005; Debnere, 2007). The Australia–Antarctica affinity and Early Cambrian age of the seven taxa recovered from limestone blocks belonging to a metaconglomerate layer of the El Jagüelito Formation (sample AB-282, Figs. 2, 3) strongly suggests the possibility that Northern Patagonia may have originated close to the Transantarctic Mountains (Antarctic-Australian segment of the Terra Australis orogen) of southern East Gondwana (González et al., 2011a, 2011b; Naipauer et al., 2011), and therefore Patagonia would have been transferred from East to West Gondwana, an interpretation that might be conciliated with eastern North Patagonian Massif as the conjugate margin of the Pensacola Mountains in East Antarctica (Ramos and Naipauer, 2014).

In the North Patagonian Massif, in the Sierra Grande–Arroyo Salado area (Fig. 1 B), field mapping has revealed a number of pyroclastic deposits, including K-bentonite and ignimbrite beds, volcanic lava flows and sub-volcanic domes intercalated in the (low-grade met-) sedimentary basement rocks of the El Jagüelito Formation, also containing the archaeanoseathy conglomerate layer. K-bentonites were derived from altered volcanic ash fall deposits which in turn are associated with silicic explosive volcanic eruptions. Volcanic ash clouds are well known to travel great distances, even across continents, and can thus help to link not only volcanic zones but also to bind stratigraphic provinces together internally, and with each other (Huff et al., 1999; Huff, 2008). In this regard, K-bentonites are useful as marker horizons for stratigraphic correlation and for interpreting the magma source and the geodynamic setting of volcanic arc from which they derive (Marker, 2005; Huff, 2016). Furthermore, the occurrence of K-bentonites in stratigraphic successions provides a powerful tool for dating such deposits, considering the deposition of the volcanic ejecta as instantaneous on a geological timescale and thus contemporaneous with siliciclastic sedimentation (Bowring and Schmitz, 2003). Thereby, findings of K-bentonite beds in the eastern North Patagonian Massif are a key geochronological feature, and then the dating of these K-bentonites is a crucial issue regarding magmatic crystallization ages and thus allowing a better constraint for the timing of coeval sedimentation. Additionally, K-bentonites and related volcanic rocks are good guide horizons for comparison with other Early Paleozoic basement rocks within Patagonia and elsewhere along the paleo-Pacific margin of Gondwana. Thus, K-bentonite beds from Patagonia are clues to contribute to the knowledge of Early Paleozoic explosive volcanism which has a continental distribution along the Terra Australis orogen of southwestern margin of Gondwana (Münker and Crawford, 2000; Cawood, 2005; Pankhurst et al., 2006, 2014; Greco et al., 2015).

This contribution describes the primary stratigraphic features, petrography, and geochemical affinity of the K-bentonites and associated volcano-pyroclastic rocks recorded in the El Jagüelito Formation from five outcrops in the Sierra Grande-Arroyo Salado area (eastern North Patagonian Massif, 41°33’S–65°19’W, South America, Fig. 1 B, C). These results, together with six SHRIMP and ICP-MS U-Pb ages from igneous and sedimentary volcanicogenic rocks provide insight into the temporal evolution of the volcano-sedimentary succession. We also analyze the volcano-sedimentary environments, volcanic facies, eruptive centers, and type of basin associated to deposition of the El Jagüelito Formation, and integrating all data within the regional context of the Early Paleozoic geodynamic scenario for the eastern North Patagonian basement.

Finally, we attempt a comprehensive lithologic, tectonostratigraphy, geochemical, and U-Pb geochronologic comparison and correlation between eastern North Patagonian basement units and several Cambrian units in East Antarctica, in order to assess the tectonic hypothesis of Ramos and Naipauer (2014) in which the eastern North Patagonian Massif was the conjugate margin of the Pensacola Mountains of Antarctica by the Early Paleozoic. A paleogeographic scenario is also discussed given K-bentonites and related volcano-pyroclastic rocks that have continental distribution in volcano-sedimentary sequences along the southwestern Gondwana margin.

2. Regional geologic setting

The extra-Andean Patagonia region south of 39°S includes three Paleozoic blocks with Cambro-Ordovician igneous-metamorphic basement rocks which, from north to south, are the North Patagonian and Deseado Massifs and the underground of the Magellan Basin (Fig. 1 A). In the eastern North Patagonian Massif, the basement rocks crop out in three distinct areas: in Yaminué–Nahuel Niyeu, Mina Gonzalito–Sierra Páilemán and Sierra Grande–Arroyo Salado areas (Caminos and Llambías, 1984; Giacosa, 1994, Fig. 1 B). Even though each area is characterized by their particular stratigraphy, lithology, and structures, regional correlation has been attempted between them, considering that all basement might have shared a common geologic evolution during the Early Paleozoic (Ramos, 1975; Caminos, 1983, 2001; Caminos and Llambías, 1984; Giacosa, 1987; Basteros et al., 1998; von Gosen, 2002, 2003; Pankhurst et al., 2006, 2014; González et al., 2010, 2011a; Greco et al., 2015 among others). In this regard, equivalent correlative units (Fig. 1 C) are the coeval low-grade metamorphic rocks, such as Nahuel Niyeu (Caminos, 1983) and El Jagüelito (Ramos, 1975; Caminos and Llambías, 1984; Giacosa, 1987) formations, high-grade metamorphic rocks, such as Mina Gonzalito (Ramos, 1975; Giacosa, 1987) and Yaminué (Caminos, 1983) complexes, as well as deformed and undeformed granitoid plutons, like the Tardugno Granodiorite (Caminos, 1983), Valcheta Granite (Gozalvez, 2009) and the Punta Sierra Plutonic Complex (Basteros et al., 1998).

In the western North Patagonian Massif (Fig. 1 B, Caminos and Llambías, 1984; Giacosa, 1994), the basement rocks are younger since deposition of sedimentary protoliths, metamorphism-deformation and magmatic crystallization ages are mainly Late Paleozoic (Cerrodo and López de Luchi, 1998; Varela et al., 1999, 2005; Basei et al., 2005;
Hervé et al., 2005; Pankhurst et al., 2006; López de Luchi and Cerredo, 2008; von Gosen, 2009, among others). Thus, this area does not register Early Paleozoic basement rocks as previously assessed (e.g., Dalla Salda et al., 1994) and regional correlations with eastern North Patagonian Massif needs to be re-evaluated considering future mappings and new geochronological constraints.

In the Sierra Grande-Arroyo Salado study area (Fig. 2), the El Jagüelito Formation (Ramos, 1975; Giacosa, 1987) is composed predominantly of slates, phyllites, metagreywackes and metasandstones, and minor intercalations of metaconglomerate lenses and mafic meta-subvolcanic rocks (de Alba, 1964; Giacosa and Paredes, 2001; González et al., 2002, 2008a), in addition to felsic meta-volcanic and pyroclastics rocks (González et al., 2011c, 2013). Despite the low-grade metamorphism and ductile deformation affecting this unit, primary clastic sedimentary structures, and igneous features are well preserved (Giacosa and Paredes, 2001; von Gosen, 2002; González et al., 2002, 2011c).

The primary stratigraphic features (de Alba, 1964; Busteros et al., 1998), strontium isotopes (Varela et al., 2014) and imprecise biostratigraphic record provided by rare linguloids and trace fossils (Arnolds, 1952; Braitsch, 1965; González et al., 2002) constrain broadly the deposition of the sedimentary protoliths of the El Jagüelito Formation to Cambro-Ordovician.

The seven taxa of Archeocyath fossil fauna recovered from limestone clasts contained in a metaconglomerate layer exposed to the West of the Hiparsa mine (González et al., 2011a; sample AB-282, Figs. 2, 3) have general affinities with the archeocyathan assemblages from the Australia-Antarctica paleobiogeographic province, indicating an Early...
Cambrian (Atdabanian-Botomian: 521–513 Ma, Ogg et al., 2016) association. Thus, deposition of the metaconglomerate is younger than Atdabanian-Botomian but within Cambrian which is also corroborated by U-Pb provenance studies of detrital zircons (Naipauer et al., 2010; Pankhurst et al., 2006).

The calc-alkaline granodioritic to granitic (minor tonalitic) plutons of the Early-to-Middle Ordovician post-orogenic Punta Sierra Plutonic Complex are emplaced in the already deformed and regionally metamorphosed rocks of the El Jagüelito Formation. The U-Pb magmatic crystallization ages of the Punta Sierra Complex are mostly between 476 and 472 Ma, with one age of 462 Ma (Varela et al., 1998, 2008; Pankhurst et al., 2006; González et al., 2008c). A Rb-Sr whole rock datum of 483 ± 22 Ma was also indicated as magmatic crystallization age to Punta Sierra granite of the same complex (Varela et al., 1997). The older U-Pb magmatic crystallization age indicates that whole geological evolution of the El Jagüelito Formation must precede emplacement of the complex (i.e., pre-476 Ma).

Sandstones and quartzites of the Sierra Grande Formation containing fossil faunas of the Hirnantian-early Silurian boundary (Rustan et al., 2013; Siccardi et al., 2014; see also Müller, 1965 and Manceñido and Damborenea, 1984 for a younger Wenlockian age) and post-Late Ordovician U-Pb detrital zircon analyses (Pankhurst et al., 2006; Uriz et al., 2011) unconformably cover both, the eroded metamorphic rocks of the El Jagüelito Formation and the granitoids of the Punta Sierra Plutonic Complex (Fig. 1C).

The Cambro-Ordovician igneous-metamorphic basement rocks and its Silurian sedimentary cover are in turn intruded by the Laguna Medina granodioritic pluton (U-Pb zircon 291 ± 5 Ma, Varela et al., 2008; belonging to the Permian Paimelán Plutonic Complex (Giacosa, 1993; Busteros et al., 1998). A widespread Jurassic volcanic cover of
the Marifil Complex (Malvicini and Llambías, 1974; Cortés, 1981) and younger formations overlie subhorizontally all the previously described units.

In Yaminú-Nahuel Niyue area (Fig. 1 B, C), the Nahuel Niyue Formation is the lithological correlative equivalent of the El Jagüelito Formation and consist of alternating beds of phyllites, slates, metagreywackes, and minor intercalations of metasandstones, metaconglomerates lenses and ultramafic to felsic meta-subvolcanic composite sills (Núñez et al., 1975; Caminos, 1983, 2001; Giacosa, 1994; Chernicoff and Caminos, 1996; Greco et al., 2015). As key correlative features connecting with the El Jagüelito Formation, but without age constraint yet, at least three horizons of meta-tuffs of <1 cm thick and two beds of (meta-) pillow-basalts to anesite lava flows have recently been described, all interbedded as part of the same sedimentary sequence (Greco et al., 2015, 2017).

The sedimentary protoliths of the Nahuel Niyue Formation also have a Cambrian maximum depositional age according to U-Pb detrital zircon ages of c. 515–513 Ma (Pankhurst et al., 2006; Rapalini et al., 2013; Greco et al., 2017) and c. 507 Ma (Rapalini et al., 2013). A SHRIMP U-Pb zircon crystallization age of 513 Ma obtained from a felsic sill is also comparable to the maximum depositional ages of the sedimentary protoliths (Greco et al., 2015).

The intrusion of several granitoids belonging to the Early Paleozoic and the Permian post-orogenic Navarrete Plutonic Complex (Caminos, 1983, 2001; Pankhurst et al., 2006; López de Luchi et al., 2008; Tohver et al., 2008; Rapalini et al., 2013) is also recorded in the Nahuel Niyue Formation. The Cambrian Tardugno Granodiorite (SHRIMP U-Pb zircon ages of 529, 526 and 522 Ma, Rapalini et al., 2013; Pankhurst et al., 2014) is tectonically juxtaposed against the Nahuel Niyue Formation (von Gosen, 2003) whereas the Valcheta pluton (Ar-Ar muscovite felsic meta-subvolcanic composite sills (Núñez et al., 1975; Caminos, 1983, 2001; Giacosa, 1994; Chernicoff and Caminos, 1996; Greco et al., 2015). As key correlative features connecting with the El Jagüelito Formation, but without age constraint yet, at least three horizons of meta-tuffs of <1 cm thick and two beds of (meta-) pillow-basalts to anesite lava flows have recently been described, all interbedded as part of the same sedimentary sequence (Greco et al., 2015, 2017).

In the Mina Gonzalito-Sierra Pailémán area (Fig. 1 B, C) further evidence of Cambrian magmatism and sedimentation is in the Mina Gonzalito Complex, which was lithologically considered as the higher grade metamorphic equivalent of the El Jagüelito Formation (Giacosa, 1987, 1994, see also Pankhurst et al., 2006). The high-grade complex is mainly composed of alternating paragneiss, amphibolites and mica schists, with minor intercalations of marbles and pre-to-syn-orogenic granitoids now transformed into orthogneisses (Ramos, 1975; Giacosa, 1987, 1993, 1994; Busteros et al., 1998; González et al., 2008b; Varela et al., 2011). U-Pb detrital zircon analyses from two paragneisses have the youngest age peaks at c. 540 Ma and c. 525 Ma, which constrains deposition of the sedimentary protoliths to Early Cambrian, in addition to overgrowths in outer rims at c. 470 Ma and c. 400 Ma (González et al., 2014). A foliated migmatitic orthogneiss with SHRIMP U-Pb studies has disclosed magmatic crystallization ages in the Punta Sierra Plutonic Complex (González et al., 2008a, 2008b).

A second tectonic-metamorphic event (D2-M2) affects not only the El Jagüelito Formation and the Punta Sierra Complex but also the sedimentary cover of the Sierra Grande Formation (Busteros et al., 1998; von Gosen, 2002 and references therein). The D2 tectonic event in the El Jagüelito Formation is equal to the first one (=D1) in both, the Punta Sierra Plutonic Complex and the Sierra Grande Formation. Within the El Jagüelito Formation, the D2 structures are discrete S2 crenulation cleavage and kink bands which refold S0–S1 planes. They are oriented E-W to NW-SE with dips mostly to the S and SW. Centimeter-scale F2 fold axes plunge steeply to W and NW. Brittle-ductile shear zones accompany these structures and thrust faults and by coeval local greenschist-facies M2 dynamic metamorphism of Late Permian age (von Gosen, 2002; Basei et al., 2005; Varela et al., 2007, 2009, 2011; P.D. González et al., 2014).

The Permian structures which affect the Punta Sierra Complex are the same as those of the El Jagüelito Formation, as is evidenced by centimeter-to-meter scale brittle-ductile shear zones cutting across the contact between granitoids and its country rocks. Two Rb-Sr whole rock-minerals isochrons of 262 ± 6 and 263 ± 9 Ma from the Mina Hiparsa pluton were considered as resetting ages produced by local M2 shear zone metamorphism during the Late Permian (Varela et al., 2009).

The Silurian Sierra Grande Formation is also affected by folding and thrusting with main NNW-SSW orientation. They are characterized by hundred meters scale open F1 folds around NW-SE to NNE-SSW trending axes, plunging north or southward (de Alba, 1964; Zanettini, 1981; Cortés, 1981; von Gosen, 2002). The F1 synclines and anticlines are symmetric, and a slight E-NE or W-directed vergence is combined with- and related to high-angle reverse faults (von Gosen, 2002; González et al., 2011c). In most parts of the Sierra Grande Formation, D1 major folds and faults are accompanied by brittle-ductile microstructures, which are all considered of Permian age (Japas, 2001; von Gosen, 2002) by paleomagnetic studies (Rapalini, 1998; Japas, 2001). This D2 event of Permian age into Cambro-Ordovician igneous-metamorphic basement rocks and the Silurian sedimentary cover is somewhat part of the Gondwanide deformational history of the North Patagonian Massif (Japas, 2001; von Gosen, 2002).
3. Geology of the magmatic protoliths

The volcanic and pyroclastic protoliths of the El Jagüelito Formation are interbedded parallel to S0 compositional banding of the sedimentary protoliths, and thus all belong to a same volcano-sedimentary sequence. Although they are intercalated in the whole sedimentary succession, their exact relative stratigraphic positions are difficult to define because of right-to-isoclinal folding and possible repetition of the beds. Thus, tectonostratigraphic successions are broadly considered for the volcano-sedimentary pile of the El Jagüelito Formation.

Volcanic and pyroclastic protoliths are essentially composed of K-bentonites (felsic primary tuffs), ignimbrites and its reworked tuffaceous equivalents, and also by felsic sub-volcanic intrusives domes which all are eminent in the Herradura del Arroyo Salado, Arroyo Salado creek and south of Punta Colorada areas (see locations in Fig. 2). Minor diabase to micro-gabbro/diorite sills and dikes and dacitic-to-rhyolitic sheet-like bodies are also present in the Herradura del Arroyo Salado and West of Hiparsa Mine.

Plutonic protoliths were recognized as part of the El Jagüelito Formation (de Alba, 1964; González et al., 2008c). The deformed El Molino and San Pedro granitic plutons (now orthogneisses) and non-deformed Punta Pórfido granodiorite intrudes the sedimentary protoliths in West of Hiparsa Mine and south of Punta Colorada respectively. According to their granitoid composition, primary intrusive feature (cut D1-M1 fabric), and Ordovician age (e.g. El Molino granite, González et al., 2008c), all must be separated from the El Jagüelito Formation and incorporated into the Ordovician Puerta Sierra Plutonic Complex (González et al., 2018 in preparation). Since available radiometric constraints are lacking for the San Pedro and Punta Pórfido plutons, we cannot completely rule out Cambrian crystallization ages or even younger as those of the Permian Paimelán Complex.

In this section, we describe primary stratigraphic features for each relevant intercalation of volcano-pyroclastic rocks and related volcanicogenic rocks in El Jagüelito Formation which are crucial to trace a comprehensive Early Paleozoic geological evolution. Fig. 2 depicts the five selected study areas cited in the text below.

3.1. West of Hiparsa Mine, Sierra Grande

This mapping area is located West of the Hiparsa Mine (41°40’S-65°25’W, near Sierra Grande town), which is well-known as the “Southern Sierra Grande iron deposit” (Zanettini, 1981, 1999). The local stratigraphy includes the igneous-metamorphic basement of the El Jagüelito Formation and the Puerta Sierra Plutonic Complex, Silurian quartzites of the Sierra Grande Formation, Permian post-orogenic granitoids belonging to Paimelán Plutonic Complex, and the extensive volcanic cover of the Jurassic Marfil Complex (Fig. 3).

The outcrops of the El Jagüelito Formation are flat to gently undulating and cover an area of approximately 5 km × 4 km. It has poor outcrop situation because they are almost fully covered by xerophytic stumpy vegetation which makes the mapping, structural and metamorphic analysis difficult.

The El Jagüelito Formation consists of alternating beds of slates, phyllites, metagreywackes, hornfels and minor intercalations of granule-to-cobble metaglomerate lenses and igneous sheet-like beds. The presence of unexposed coeval limestones is inferred from archeocyathan limestone blocks contained in a metaglomerate layer (see also Section 7). The original S0 bedding consisting of conglomerate, greywacke, and pelite banding is still well-preserved whereas primary sedimentary structures in coarse-grained rocks, such as oscillatory ripple marks, normally graded bedding and cross-bedding, flutes and load casts, are good polarity markers (González et al., 2011a).

Following a brief mention of de Alba (1964), our mappings identified intercalations of a number of NNE-SSW trending (meta-) felsic lava flows or sills, the small granitic body of the El Molino pluton (González et al., 2008c), and a NE-SW longitudinal dike swarm of diabase-microdiorite (Figs. 3, 4 B, C). The lava flows/sills are interbedded parallel to S0 compositional banding of the sedimentary protoliths, and thus all belong to the same volcano-sedimentary sequence. Although it is challenging to determine whether they are lava flows or sills due to poor outcrop situation, the igneous bodies are 0.5–1 m thick tabular sheet-like beds, occasionally up to 6 m, whereas their lengths are up to 270 m but usually of a few tens of meters. Based on primary igneous mineral associations and textures, they are classified as porphyritic dacies and rhyolites (Fig. 4 B, see also petrography in Section 4).

The lava flows/sills share the same tectonic-metamorphic M1–D1 event as that of the host sedimentary rocks, and even one igneous body is incorporated as the inclusion of already deformed and metamorphosed country rock within Ordovician post-orogenic Mina Hiparsa pluton (González et al., 2008c; Fig. 3).

Regarding associated volcanicogenic rocks, a metaglomerate (AB-282) is a c.1100 m long by 10 m thick bed (see also an expanded description in González et al., 2011a). Clasts are sub-rounded to rounded, poorly sorted pebbles and cobbles of medium sphericity, composed of granitoids, andesites to rhyolites, mono- and polycrystalline quartz, shales, and phyllites. Archeocyathan limestone clasts are minor but large (up to 1.0 m) and subangular (Fig. 4 A). Microscopic analysis also corroborates an essentially magmatic provenance of detrital components, with minor inputs of metamorphic and calcareous sources (Section 4).

The sub-volcanic dike swarm from West of the Hiparsa Mine is one of two recognized mafic swarms intercalated in the El Jagüelito Formation. The other swarm is composed of sills and crops out at the Herradura del Arroyo Salado (see Section 3.2 below). At the Hiparsa Mine, a N-S to NE-SW trending longitudinal dike swarm of ~4 km long and 0.3 km wide spreads northward from Medina lake to Puesto El Molino (Fig. 3). It consists of several post-orogenic dikes, composed of diabase and micro-gabbro/diorite, intruded parallel to S0–S1 of the phyllites and metagreywackes with sharp contacts. Thin strips of orange-red thermal oxidation aureoles, fine-grained hornfels and decussated porphyroblast of muscovite were developed along both sides of wall rocks (González et al., 2008c). Most of the dikes are discontinuous and arranged in several separate and tabular shaped segments of few- to tens of meters in width, resulting in an apparent en-échelon intrusion. In a regional distribution, the dykes show a parallel to sub-parallel orientation, copying the strike and dip of the already regionally structured meta-sedimentary country rocks (Fig. 4 D). Therefore, based on post-orogenic character, petrography, and a K-Ar whole-rock cooling age of 226 ± 6 Ma (González et al., 2018 in preparation), the dyke swarm is separated from El Jagüelito Formation and incorporated into a post-orogenic Triassic dyke swarm which has regional distribution within the eastern North Patagonian Massif (González et al., 2016).

3.2. Herradura del Arroyo Salado

The “Herradura del Arroyo Salado” (41°28’30”S-65°19’30”W, Fig. 2) mapping area is around 14 km north of the Sierra Grande town. The local geology is composed of the El Jagüelito Formation, its Silurian sedimentary cover of the Sierra Grande Formation and younger units (Fig. 5). Previous lithological mappings correspond to Weber (1983), Busters et al. (1998), Giacosa and Paredes (2001) and González et al. (2011c). A swarm of pre- to syn-D1–M1 mafic sills and a group of andesitic to trachyandesitic sub-volcanic dikes were formally integrated into the El Jagüelito Formation (González et al., 2011c). However, U-Pb zircon dating of c. 460 Ma and c. 243 Ma in the mafic and intermediate rocks constrain their magmatic crystallization ages to Ordovician and Middle Triassic respectively. According to these ages, primary intrusive relationships with sedimentary protoliths and even petrographic and geochemical features, these igneous rocks are excluded from the El Jagüelito Formation and incorporated into the Ordovician Puerta Sierra Plutonic Complex (González et al., 2018 in preparation) and post-
orogenic Gondwanide magmatism respectively (P.D. González et al., 2014; S.N. González et al., 2014).

Two blocks of metamorphic rocks of the El Jagüelito Formation are juxtaposed in tectonic contact by a NW-SE striking low-angle reverse fault ("Herradura del Salado thrust") which is ascribed as a major D2 structure (González et al., 2011c; Fig. 5).

The footwall is composed of alternating beds of yellowish-brown (meta-) arkosic pumice sandstones with chalky-white K-bentonites, and green slates, phyllites and minor metagreywackes. The S0 bedding is well preserved through the entire succession and consists mainly of K-bentonite and psammite-pelite banding. Within the bedding and bedding plane, primary sedimentary structures are also well preserved and aided mapping as polarity markers. The presence of unexposed coeval limestones is inferred from rare outsized limestone dropstones of uncertain origin in phyllites (González et al., 2011c).

At least six tabular beds of K-bentonites of 10 cm thick and derived from ash fall clouds are parallel to S0 stratification of meta-arkosic sandstones (Fig. 6 A). The mineralogical composition, X-ray determinations of clay minerals and geochemical features confirms their classification as K-bentonites (see below).

The hanging wall is essentially composed of alternating purple, green slates and phyllites, and minor pinkish meta-greywackes, which defines the S0 compositional banding of the sedimentary succession. The swarm of mafic sills belonging to the Ordovician Punta Sierra Plutonic Complex is also parallel to S0 banding (Fig. 5). Until now, no K-bentonite horizons were recorded in the hanging wall. Rare linguloid fossils suggest a protolith depositional age vaguely to Cambro-Ordovician (Braitsch, 1965).

The pumice sandstones and K-bentonites share the same D1 structures and M1 regional metamorphism as those of the host sedimentary rocks (Giacosa and Paredes, 2001; González et al., 2011c). Low-grade M1 metamorphism under greenschist facies (chlorite-stilpnomelane grade) is characterized by mineral associations of Chl-Ser-Qtz in metasandstone, Ser-Chl-Ab-Qtz, and Ms-Chl-Stp in metapelites, as well as Ser-Illite/Smectite-Zeolites ± Chl ± Prh in meta-K-bentonites (González et al., 2011c, see also Section 4 below).

3.3. Lower Arroyo Salado creek

Two outcrops of the El Jagüelito Formation containing volcanic and pyroclastic intercalations are exposed alongside lower Arroyo Salado creek (Fig. 2). The major is placed close to Mussi farm (41°34′S-65°07′W) whereas the other is smaller and located around 1 km East of the León farm (41°35′S-65°03′W, Figs. 7 and 8).

3.3.1. K-bentonite horizons of the Mussi farm

Here, the local stratigraphy comprises the El Jagüelito Formation intruded by the Arroyo Salado granodioritic pluton belonging to the Punta Sierra Plutonic Complex and, in turn, both units are unconformably covered by psammitic rocks of the Silurian Sierra Grande Formation (Fig. 7).

The El Jagüelito Formation is mainly composed of hornfels, schists, metagreywackes, slates, phyllites, and metasiltstones, with minor intercalations of metasandstones and granule metaglomerates. The sedimentary protoliths preserve the original S0 bedding which consists mainly of petile-psammitic banding. Primary sedimentary structures in meta-psammitic rocks, such as oscillatory ripple marks, normally graded bedding and cross-bedding, flutes and load casts, and such as flaser bedding and trace fossils in meta-pelitic rocks (González et al., 2002), are good polarity markers and for correlating strata.

At least fourteen tabular to boudinaged beds of greenish-white K-bentonites of around 10–12 cm thick and derived from ash fall clouds are intercalated parallel to S0 lamination of the greyish green to yellowish slates and phyllites (Fig. 6 B, C, D). The mineralogical composition, X-
ray determinations of clay minerals and geochemical features confirms their classification as K-bentonites (see below).

K-bentonites and sedimentary protoliths of the El Jagüelito Formation are affected by the same two regional tectonic-metamorphic events exhibiting in other outcrops of the Sierra Grande-Arroyo Salado area (von Gosen, 2002; González et al., 2013; P.D. González et al., 2014). D1 structures are accompanied by regional metamorphism M1 that reached greenschist facies characterized by mineral associations of Ms-Bt-Plg-Prh-Qtz ± Turm and Qtz-Plg-Fk-Bt in meta-greywackes, Qtz-Bt-Ms-Chl and Bt-Ms in metapelites, as well as Illite/Smectite-Prh-Zeolites-Ser in meta-K bentonites (Fig. 6D; González et al., 2013; P.D. González et al., 2014, see also Section 4 below).

3.3.2. The volcano-sedimentary succession of the León farm

In the León Farm, the local stratigraphy of the Cambro-Ordovician igneous-metamorphic basement includes the El Jagüelito Formation and the non-deformed Boca del Salado granodioritic pluton belonging to the Punta Sierra Plutonic Complex. These units are unconformably covered by psammitic rocks of the Silurian Sierra Grande Formation and by the extensive sedimentary deposits of two marine ingresses, one Paleocene and the other Oligocene-Miocene (Fig. 8A).

The El Jagüelito Formation is composed of alternating yellowish-brown pumice (meta-) sandstones and siltstones, a bed of ignimbrite, and a felsic dome. All these rocks are part of the same explosive subvolcanic dome complex containing a subaerial intrusive cryptodome and reseedentered syn-eruptive volcaniclastic deposits that have a genetic connection with active volcanism (Fig. 8C). The dome is hosted in pelitic sediments (now meta-siltstones) and exhibits the geological features of high-level intrusions and also of extrusive lava domes. The siltstones are composed of either sedimentary clastic components or juvenile tephra (see petrography below). A shallow subaerial marine environment setting is inferred for the subvolcanic complex emplacement (Section 7).

The cryptodome is typically ovate to elliptical covering an area < 0.1 km². It is composed of somewhat coherent inner part of devitrified lava (“vitrophyre”) with “false” granophyric to micro-graphic texture (e.g., McPhie et al., 1993, p. 169) and a chilled outer part or carapace of devitrified hyaloastatite and hyaloclastic breccia. In the western part of the dome, the contact between hyaloastatite and siltstones is locally intermixed and well exposed on a vertical section 25 m wide and 10 m high (Figs. 8 B, 9 C). In hyaloastatite, flow banding is parallel to contact, and relict igneous structure of glass is banded perlite comprising perlitic fractures which form a roughly rectilinear network. This structure is accentuated by crystallization of secondary minerals such as goethite and other phyllosilicates and roughly spherical spherulites along the cracks (Fig. 9D). In siltstones, bedding S₀ is locally folded around cm-scale tight folds formed by dome emplacement (Fig. 9C). It is also oxidized owing thermal effect of dome intrusion. As part of its intrusive feature, the cryptodome also contains a number of inclusions of siltstone now transformed into mottled hornfels. In the eastern part of the cryptodome, the contact with siltstones is blurred and partly covered by modern alluvial sediments and soils. However, contact metamorphism due to the thermal effect of dome intrusion is evidenced by the formation of dotted meta-siltstones. Collapse of a growing shallow subaqueous, partly extrusive cryptodome generates the ignimbrite and pumice volcaniclastic sandstones.

A nearly tabular bed of subaqueous ignimbrite (sample SG09-75) of around 8 m thick is intercalated parallel to lamination S₀ of the siltstones. Basal unconformity of ignimbrite is marked by a sharp erosion surface which cut this lamination. In ignimbrite, primary laminar
flowage igneous feature such as flow banding/foliation is parallel to the base (Figs. 8B, 9A, B). In contact, siltstones are oxidized and transformed into spotted metasiltstone due to the thermal effect of local contact metamorphism produced by the hot ignimbritic flow. The contact metamorphism was of very low-grade since the pyroclastic flow was relatively cold due to interaction with cold seawater. Then, siltstones were not transformed into hornfels. The top contact of the ignimbrite is faulted, tectonically juxtaposed with siltstones and sandstones of the same sequence (Fig. 9B, see also below).

A tabular bed 5 m thick and some <1 m thick layers of pumice sandstone are intercalated in epiclastic and pumice siltstones with sharp contacts (Fig. 9E). Siltstone layers are <1 m thick and are usually interbedded with beds of mudstone of around 25 cm thick. The thickest sandstone bed is readily distinguishable because of uniform composition and common sedimentary structures and is traceable over outcrop distances. As a result, it is a key bed which can be used as a polarity marker horizon for mapping and reconstructing the folded structure (Fig. 8B). In top contact, the primary sedimentary structures are tabular cross-bedding or trough cross-bedding whereas at the base ripple marks and flutes are frequent. The basal contact of the sandstone bed is marked by irregular erosional disconformity surface which cut S0 lamination of siltstone. On a volcano-genetic point of view, the pumice sandstones are interpreted as shallow subaqueous resedimented syn-eruptive volcaniclastic deposits, dominated by traction current bedforms (e.g., McPhie et al., 1993, p. 6–7). Their petrographic features (see Section 4) are equal to those of the arkosic sandstones from Herradura del Arroyo Salado and therefore they can be considered as lithological correlative equivalents.

D1 structures are upright open to tight F1 folds of decameter scale affecting the volcano-pyroclastic/epiclastic banding S0 of the rocks (Fig. 8B) and related fanning axial plane cleavage S1 (Fig. 9B). The high-angle normal fault in the hinge zone of a major syncline containing the ignimbrite is interpreted as caused by hinge collapse of this competent layer that occurs between incompetent beds of meta-siltstones (Figs. 8, 9A). Although this fault is related to the formation of F1-S1 structures and then it is ascribed to the D1 deformational event, its volcanotectonic relationship before D1-M1 remains unclear.

Coeval to D1 structures, very low-grade regional metamorphism M1 is represented by an association of Ms-Phr in meta-ignimbrite, Ser-Ms-Chl-Prh-Pump-Zeolites and Ms-Ser-Ab in pumice sandstones and siltstones, and Chl-Prh-Pump and Ab-Chl-Zeolites-Prh-Pmp ± carbonates in the felsic dome, which are all indicative of prehnite-pumpellyite-facies transitional to greenschist facies (Section 4).

The undeformed and non-metamorphosed Boca del Salado granitic pluton belonging to the Ordovician Punta Sierra Plutonic Complex (SHRIMP U-Pb zircon 476 Ma, Pankhurst et al., 2006) is exposed as small, isolated outcrops in a beach berm near the estuary of the Arroyo Salado creek. 1.5 km northwest, close to Rincón Hill, a minor outcrop of spotted phyllic slate can be attributed as the country rock thermally affected by local contact metamorphism produced by granite intrusion (Fig. 8A). The slate is composed of fine-grained chlorite + sericite + prehnite defining planes of S1 slaty cleavage which are overprinted by post-S1 porphyroblasts of retrogressed cordierite.

3.4. South of Punta Colorada

The igneous-metamorphic basement south of the Punta Colorada area (41°45′S–65°01′W) is poorly exposed in the beach berm of the Argentine Seacoast for ~5 km long, particularly during the low tide in a narrow strip of around 400 m widths. Onshore, further north to San
Pedro farm, there is another outcropping of basement covered by Quaternary deposits (Figs. 2, 10). Brief mentions of these basement rocks were previously made by de Alba (1964) and Gelós et al. (1990).

Despite the poor outcrop situation, the basement reveals a comprehensive diversity of metamorphic and igneous rocks. Volcanic and pyroclastic protoliths of the El Jagüelito Formation and the San Pedro and Punta Pórfido granitoid plutons are for the first time documented and described. Structures affecting basement rocks are also varied and include those from Early and Late Paleozoic tectonic-metamorphic events, and can be even younger since many structures also affect the Jurassic volcanic cover of the Mariápolis Complex.

In the berm, the El Jagüelito Formation consists essentially of alternating beds of phyllites, metagreywackes, and hornfels, with minor intercalations of volcanogenic pebble to granule metaconglomerate lenses. Some (meta-) ignimbrite and pyroclastic agglomerate beds and trachytic lava flows are interbedded parallel to S₀ pelite/psammite banding of the sedimentary protoliths whereas sub-volcanic intrusive bodies, such as domes, feeder necks, and dikes cut S₀ banding (Fig. 11). All magmatic rocks are products of a same effusive-explosive subaerial complex (stratovolcano?) containing pyroclastic and lava flows that have a genetic connection with subvolcanic intrusive bodies.

A bed of rhyolitic ignimbrite (sample SG09-66) around 1.0 m thick is intercalated with tabular beds of meta-trachytes 1.0 to 1.5 m thick and a bed of agglomerate. Pinch and swell structure is prominent in all these competent layers. The ignimbrite displays a distinctive eutaxitic texture indicated by welding of pumice clasts or bombs which defines a discontinuous layering (Fig. 11B). Crystal fragments of quartz and plagioclase are embedded in a devitrified matrix. We do not completely rule out that pumice clasts have also been flattened and stretched by subsequent deformation, resulting in a foliated fabric that mimics primary eutaxitic texture. This ignimbrite does not show any significant petrographic feature (e.g., quenching textures, hyaloclastite, albization, among others) which represents the interaction between ignimbritic flow and seawater. Therefore, the flow can be interpreted as subaerial but adjacent to a shore. The eutaxitic texture is typical in subaerial welded ignimbrites that were emplaced hot and collapsed under their weight (Beavon et al., 1961; Gifkins et al., 2005a).

The massive, matrix-supported agglomerate consist of sub-rounded to rounded bombs of devitrified pumices, dispersed in a matrix of recrystallized bubble-wall shards. Pumices are now flattened due to load compaction after deposition or to subsequent deformation, resembling eutaxitic texture in welded ignimbrite (e.g., Gifkins et al., 2005a). In general, agglomerates are restricted to proximal volcanic settings. Finally, coherent porphyritic trachytes consist mainly of euhedral plagioclase phenocrysts embedded in an aphanitic groundmass and minor and rare felsic aphanitic clasts (Fig. 11 B, C, D).

Co-magmatic intrusive domes, feeder necks, and dikes are sub-volcanic equivalents of lava flows, and then they are also composed of trachytes. The bodies cut S₀ banding or even S₀-S₁ foliations with sharp contacts and show a well-marked change in texture, ranging from aphanitic/micro-porphyritic in chilled margins to porphyritic or fine-grained equigranular textures in cores. Flow foliation and flow folds are common igneous features in chilled margins (Fig. 11 E, F).

A 1.0 m thick bed of a volcanogenic conglomerate (sample SG09-61) is intercalated in the same sequence of metagreywackes and phyllites which also contains the intercalations of trachytes and ignimbrite (Fig. 11 G). The matrix-supported conglomerate preserves a crude S₀ stratification and ripple-marks, and its magmatic provenance of detrital components is revealed by sub-rounded to rounded pebbles to granules of andesites, trachytes, and trachyandesites, devitrified pumices and granitoids, with minor mono- and polycrystalline quartz. The petrography of volcanic clasts is the same as those of the dikes, necks and lava
flows, therefore indicating a proximal setting connection with volcanopyroclastic source area. Microscopic analysis also corroborates an essentially magmatic provenance of detrital components, with minor inputs of metamorphic sources (see petrography below). Archaeocyathan limestone clasts which are distinctive in the metaconglomerate AB-282 were not found here.

Two non-deformed granodioritic bodies intrude phyllites and metagreywackes, i.e., the Punta Pórfito stock and a pluton exposed as small, isolated outcrop north of Punta Pórfito (Fig. 10). The Punta Pórfito pluton cut M1-D1 fabric in the metamorphic rocks of the El Jagüelito Formation and then can be classified as post-orogenic. It contains many inclusions of these country rocks now transformed into hornfels. The contact between the pluton and the El Jagüelito Formation is sharp and is in turn cut by dikes fed from granite (Fig. 11 A). A belt of hornfels of around 200 m thick and containing cordierite porphyroblasts develops along its northern contact. According to primary intrusive features, the Punta Pórfito pluton might belong to the Punta Sierra Complex, and then its magmatic crystallization age would be Ordovician. However, considering its post-orogenic character, we cannot completely rule out that it can be younger and therefore part of the Permian Pailemán Plutonic Complex.

North to the San Pedro farm, the El Jagüelito Formation is composed of alternating yellowish siltstones and pumice sandstones, all intruded by andesitic dikes. A tabular bed of ~1 m thick of pink arkosic sandstone...
is intercalated in pumice sandstones. The compositions, petrographic and volcanogenic features of these rocks are the same as those pumice sandstones of the León farm. As a result, both regions seem to share the same volcano-pyroclastic genetic processes. In the top contact of pumice sandstones, the primary sedimentary structures are tabular cross-bedding and ripple marks (Fig. 11 H). Their basal contact is marked by an irregular erosional paraconformity surface which is parallel to S₀ lamination of siltstones. On a volcano-genetic point of view, these sandstone beds are interpreted as those of the León farm, that is, shallow subaqueous resedimented syn-eruptive volcaniclastic deposits, dominated by traction current bedforms.

The deformed San Pedro granitic pluton crops out as a N-S trending strip of around 900 m long and 100 m wide, which is mostly covered by modern alluvial sediments (Fig. 10). The pluton is tectonically juxtaposed with siltstones and sandstones by an N-S trending and West dipping ductile shear zone. According to structural relationships, the granite, now an orthogneiss, intruded still undeformed sedimentary protoliths of the El Jagüelito Formation, and both were then deformed and regionally metamorphosed together. Thus, the San Pedro granite pluton is pre-orogenic concerning the D₁-M₁ tectono-thermal event and is comparable to El Molino Pluton from West of the Hiparsa Mine (González et al., 2008c). Based on regional geological knowledge, the San Pedro pluton might belong to the Punta Sierra Plutonic Complex, and thus we can envisage a magmatic crystallization age as old as Ordovician or even older. A Cambrian age comparable to the Tardugno granodioritic pluton from the Yaminué-Nahuel Niyeu area cannot be completely ruled out (Fig. 1).

4. Petrography and X-ray diffraction analyses

The petrographic study was focused on K-bentonites, ignimbrites, and related volcanic rocks, and also on two volcanogenic conglomerates

Fig. 9. Details from subvolcanic dome complex in the León farm area. A. Basal unconformity of the nearly tabular ignimbrite bed with lamination S₀ of the siltstones. Plan view, the upper side of photograph = West. B. Detail of erosional surface at the base of the ignimbrite which cut across lamination S₀. Primary flow foliation of the ignimbrite is parallel to the base whereas the hot ignimbritic flow produced reddish thermal oxidation in siltstones. The diameter of the coin is 2.2 cm. C. Western intrusive contact of the cryptodome exhibiting the flow banded yellowish brown hyaloclastite and reddish yellow siltstones with bedding S₀ locally folded due to dome emplacement. Note the poor outcrop situation. The diameter of the coin is 2.2 cm. D. Primary relict igneous features in devitrified hyaloclastite comprising a roughly rectilinear network of dark perlitic fractures and spherical spherulites in the matrix and along cracks. The diameter of spherulites is 0.5 cm. E. A tabular bed of pumice sandstone intercalated in epiclastic and pumice siltstones. Plan view, the upper side of photograph = NW. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
due to their major magmatic provenance. Petrography is based on mineralogical and textural analyses of thin sections using standard optical microscopy. It was performed at the Petrography Laboratory of the Instituto de Investigación en Paleobiología y Geología (Universidad Nacional de Río Negro), with a Nikon® Eclipse E 200 microscope integrated with MOTIC® Moticam10 digital high-definition camera and application software Motic Images Plus 2.0, with dual output to a computer and directly to an imaging device. The analysis included basic mineral and fabric description, visual estimation of grain size, mineral abundances, and rock classification. The nomenclature of the primary and secondary igneous textures and genetic classification of volcano-pyroclastic deposits is based on McPhie et al. (1993) and Gifkins et al. (2005b).

Two K-bentonites were also analyzed with X-ray diffraction patterns to determine the composition of clay mineral fraction. X-ray diffraction analyses of whole rock powders and clay fraction (<2 μm) were performed at the DRX Laboratory of the Facultad de Ciencias Naturales y Museo (UNLP, La Plata), according to standard procedures and analytical conditions summarized in Varela et al. (2013) and Raigemborn et al. (2014).

4.1. Metaigneous rocks

West of the Hiparsa mine (Sierra Grande), lava flows or sills of porphyritic dacites display variably sized phenocrysts of plagioclase and amphibole with minor quartz and biotite, embedded in a groundmass of recrystallized plagioclase and amphibole ± K-feldspar, with apatite and zircon as accessory minerals. Quartz phenocrysts contain rounded inclusions of the groundmass. Porphyritic rhyolites also show phenocrysts of K-feldspar, plagioclase, quartz and minor garnet, embedded in a groundmass of relict granophyric texture. Primary igneous textures neither depict the effusive or intrusive feature, like a lava flow or a sill respectively.

As key metamorphic characteristic of recrystallized groundmass, S₁ cleavage planes are marked by sericite + chlorite + biotite + quartz alignment (Fig. 12 A, B) which also defines lepidoblastic texture. This
assemblage is typical of greenschist facies (biotite grade) M1 regional metamorphism (Spear, 1995). Deformation lamellae distinguish the intra-crystalline deformation of phenocrysts, undulose extinction and sub-grains in quartz and kinked or tapered albite twins towards the grain boundary in plagioclase and undulose extinction in K-feldspars.

In the Herradura del Arroyo Salado, horizons of the K-bentonites are buff- to tan-colored bands (Fig. 6A). Primary volcanic features of the K-bentonites are constant among different beds. Sample AS-3 is composed of sub-millimeter sized, sub-rounded devitrified pumice clasts and phenocrysts of quartz as typically six-sided prisms with steep pyramidal terminations and feldspars (Fig. 13A, C). The proportions of these phenocrysts are constant among different beds, although sometimes quartz prevails over feldspars. Apatite and zircon are accessory minerals. The primary glassy matrix is now devitrified and recrystallized to very fine-grained aggregates of sericite, clay minerals (mostly illite, see XRD analysis in Section 5.1.3), zeolites, chlorite, and prehnite, which...
defines slaty cleavage S_1 of the meta-K-bentonite. This mineral association is characteristic of low-grade M$_1$ regional metamorphism (Spear, 1995).

The arkosic pumice sandstones which are interbedded with K-bentonite also reveal a main volcano-pyroclastic provenance. They are composed of lens-shaped pumice clasts now recrystallized to sericite + albite, abundant microcline and plagioclase, and lithic fragments of andesites and granophyres. The matrix is recrystallized to very fine-grained aggregates of sericite and albite.

In Arroyo Salado creek, at Mussi farm, the K-bentonite SG12-06 consist mainly of fragments of quartz phenocrysts with minor plagioclase and other feldspars, and sub-rounded devitrified pumice clasts (Fig. 13 B, D, F). Euhedral flakes of biotite are also present as phenocrysts (Fig. 13 E). Long-prisms of zircon crystals with axial ratios up to 4:1 and oscillatory zoning are present (Fig. 13 D, see also Section 6), both features consistent with their magmatic origin. The primary glassy matrix of this K-bentonite is also devitrified and recrystallized as that of AVS-3. S_1 slaty cleavage is marked by alignment of very fine-grained aggregates of sericite, clay minerals, zeolites, and prehnite which is also characteristic of low-grade regional metamorphism M$_1$ under sub-greenschist facies. Coffin-shaped zeolite porphyroblasts ($\leq 100 \mu m$ long) also indicate this metamorphic grade (Fig. 13 E).

In the León farm of the Arroyo Salado creek, as key pyroclastic features, metaignimbrite SG09-75 display fine-grained euhedral phenocrysts of quartz and plagioclase. The quartz is embayed and contains inclusions of fresh biotite and devitrified matrix. Perthitic feldspar displays a granophytic arrangement with quartz (Fig. 13 G), while plagioclase is normally zoned and also show sericite-rich cores and rims.

Fig. 12. Photomicrographs from thin sections, crossed polarizers, except (C) which is a polished hand specimen section. A. Metadacite AB-289 from West of Hiparsa mine area. Phenocrysts of amphibole (amp) and plagioclase (pl) embedded in the recrystallized groundmass. The trace of a penetrative foliation S_1 is indicated by long axes orientations of phenocrysts. B. Metarhyolite from West of Hiparsa mine area. Phenocrysts of quartz (qz) are set in a foliated matrix showing traces of penetrative foliation S_1 marked by sericite (ser) alignment. C–D. The relict porphyritic texture in meta trachyte SG09-67. Phenocrysts of sanidine (sa), plagioclase (pl), and amphibole (amp) set in the recrystallized groundmass. Prehnite (pre) replaces plagioclase as part of the low-grade metamorphic mineral association. E. Metaconglomerate AB-282 from West of Hiparsa mine area. Textures of intracrystalline deformation in quartz (qz) with undulose extinction, alkali feldspar (kfs, microcline) and plagioclase (pl) with deformed twins; a flake of detrital muscovite (m); recrystallized metapelitic matrix (m) with the quartz-chlorite-sericite M$_1$ association. F. Volcanogenic conglomerate SG09-61 from South of Punta Colorada area. Flattened lens-shaped pumice clasts and deformed clasts of andesites/trachytes (center of view), plagioclase (pl), and volcanic quartz (qz) are surrounded by penetrative S_1 foliation planes of quartz-chlorite-sericite-muscovite-prehnite M$_1$ association.
replaced by albite. Apatite and zircon are accessories. Glassy fragments such as pumice and bubble-wall shards are now devitrified and recrystallized into spherical and plumose spherulites or even metamorphic mineral assemblages (Fig. 13H, I). Phenocrysts are embedded in a felicitic, very fine-grained matrix which is recrystallized to a metamorphic assemblage of sericite, prehnite, and chlorite. By relict igneous phenocrysts, the ignimbrite can be classified as rhyolitic (see also geochemical features in Section 6).

The pumice sandstones interbedded with ignimbrite are volcanicogenic rocks according to volcanic lithic clasts, angular quartz and K-feldspars (anorthoclase, microcline), and devitrified pumice and glass shards (Fig. 13L). It resembles the same rocks as those arkosic
pumice sandstones from the Herradura del Arroyo Salado. Fragments of volcanic quartz with pyramidal termination are attached to groundmass of felsitic texture while lens-shaped and flattened pumices are devitrified/recrystallized to sericite. K-feldspars with undulose extinction are replaced by groups of small flattened crystals of pumppellity.

Meta-siltstones are also volcanic rocks which are intimately interbedded into the volcano-sedimentary complex. It consists mainly of fragments of angular quartz and very fine-grained (~200 μm) pumice clasts embedded in a matrix which is recrystallized to sericite-muscovite and chlorite. Pumices are flattened, stretched and recrystallized to sericite and prehnite-pumpellyite, and together with the alignment of aggregates of sericite-chlorite defines slaty cleavage S1 of metapelites. Chlorite fills cavities whereas zeolites + pumpellyite recrystallized in the necks of micro-boudins or in fibrous veinlets which cross-cut S1 cleavage as a late-stage of regional M1 metamorphism.

In a cryptodome, hyaloclastic breccia of the outer part wraps up hyaloclastic lava of the inner part. The breccia is monomictic, non-stratified and consists of angular clasts of "false granitic texture" (e.g., McPhie et al., 1993, p. 169) with a diameter of up to 15 mm, and set in a cogeneric matrix. The hyaloclastic breccia formed by the fracturing of the coherent dome in response to cooling contraction, and shearing of the fractured dome due to movement of the growing cryptodome. The clasts consist of angular fragments of quartz, plagioclase, and biotite, and pod-like fragments of devitrified/recrystallized pumice. Plagioclase and pumice are replaced by a metamorphic association of prehnite, fibrous pumpellyite, and clay minerals. Clasts are cut by a network of fractures which is filled with goethite.

A somewhat coherent hyaloclastic lava of the inner part (sample SC12-11) is composed of devitrified hornblende with "false" granophytic to micro-graphitic texture (e.g., McPhie et al., 1993, p. 169). Fragments of pyramidal quartz, albizzized plagioclase, and biotite with cluster cysts of prehnite, igneous amphibole, and angular pumice are all embedded in a matrix which is mainly composed of prehnite, pumpellyite, albite, and tremolite-actinolite. Closely spaced pores are also filled with this association + carbonates. This mineral association within synvolcanic intrusions may also result from reactions with seawater or modified seawater circulating through the intrusion, either during hydrothermal activity or cooling (Gifkins et al., 2005b). However, the mineral association is regionally extensive, and therefore it can also be ascribed relating to low-grade regional metamorphism M1 under greenschist facies.

In hyaloclastite intercalated between outer and inner parts of the cryptodome (Fig. 9 D), glass is devitrified in banded perlite comprising perlitic fragments which form a roughly rectilinear network. Sericite + hematite mark the relic perlitic fractures. Roughly spherical spherulites consist of radial crystal fibers which are recrystallized to albite, quartz, and sericite. Clusters of sericite mark the boundaries between spherulites. The matrix of the hyaloclastite is now composed of massive sericite + hematite, euhedral quartz, and albizzized plagioclase ± K-feldspar. South of Punta Colorada, in the berm of the Argentine sea coast, the metagranibrite SG09-66 preserves relics of igneous minerals and textures such as crystal fragments of biopyramidal quartz, K-feldspar, plagioclase and rare biotite. The matrix is composed of glass shards and aligned flammes which defines a well-preserved eutaxitic texture (Fig. 13 J, K). Vitric clasts are devitrified to spherical and plumose spherulites in addition to overprinting quartz-albite-sericite association which belongs to low-grade regional metamorphism M1 under greenschist facies.

The porphyritic texture in the meta-trachyte SG09-67 consists of relatively large, euhedral plagioclase and sandine, and minor amphibole-biotite phenocrysts dispersed in a fine-grained and recrystallized groundmass (Fig. 12 C, D). Albite + epidote + sercite replaces the plagioclase, and quartz-sercite-opaque minerals pseudomorphically overprint igneous amphibole and biotite. The groundmass is recrystallized to aligned sercite which defines the S1 non-penetrative cleavage.

4.2. Metaconglomerates

The clasts of the metaconglomerate AB-282 are sub-rounded to rounded, poorly sorted pebbles and cobbles of medium sphericity, composed of granitoids, andesites to rhyolites, mono- and polycrystalline quartz, shales and phyllites. Archeocyathan limestone clasts are minor but large (up to 1 m) and subangular. Petrographic analysis indicates an essentially magmatic provenance of detrital components, with minor inputs of metamorphic and calcareous sources (Fig. 12 E). The same components (± detrital zircon, apatite, and tourmaline) are in the matrix, in which deformation lamellae distinguish intransacrystalline deformation of minerals from clasts, undulose extinction and subgrains in quartz, kinked or tapered albite twins towards the grain boundary and also undulose extinction in feldspars. Sericite + chloride + quartz alignment marks the S1 cleavage planes in the lepidoblastic matrix, and are typical of greenschist facies (chlorite zone) M1 metamorphism.

Limestone clasts of up to 0.25 mm in size, with recrystallized mantled texture, are also recognized at the microscopic scale. Mantling is composed of relict core aggregates of coarse carbonate crystals with undulose extinction and bent twins, and a fine-grained recrystallized mantle of the same composition and mostly polygonal granoblastic texture (González et al., 2011a). Sample SG09-61 is a pebble conglomerate with sparse volcanic clasts. The metaconglomerate contains clasts of quartz (undulose extinction and sub-grains), plagioclase and heavy minerals (zircon, apatite, rutile, and opaque). Its magmatic provenance of detrital components is also revealed by sub-rounded to rounded pebbles of anodesite, trachyte, and trachyandesite, devitrified pumice and minor granitoids (Fig. 12 F). Clasts share the same composition as that of the trachyte SC09-67 (see above) which is intercalated in the same sequence of the metaconglomerate. Six-sided crystals also indicate the volcanogenic origin of quartz grains with embayments and rounded inclusions of the groundmass. The granolepidoblastic matrix consists of recrystallized quartz + chloride + sercite + muscovite + prehnite + pumpellyite, which define the S1 cleavage planes together with lens-shaped and flattened pumice clasts. The mineral association is also typical of prehnite-pumpellyite facies M1, metamorphism.

4.3. Clay mineralogy of K-bentonites

4.3.1. Meta-K bentonite AVS-3

In XRD analysis of whole-rock powder, this sample is composed predominantly of quartz, sercite, and feldspars, in accordance to those seen in petrography (Fig. 14 A). Plagioclase and alkali feldspars were possible to recognize as the varieties of feldspars. Overall in whole-rock powder, feldspars have many reflections that interfere with other minerals, such as zeolites, apatite, carbonates, among others, roughly in the range between 27 and 31° 2θ (Moore and Reynolds, 1997). Due to this interference, the zeolites recognized under thin sections were difficult to identify with XRD. Although sercite is noticeable as a major component, its sharp peak near 26.5° 2θ (60.63% intensity, Tomita et al., 1998) is overlapped with quartz.

In the air-dried sample, the clay mineral fraction show sharp peaks at 10.01, 5.01, and 3.33 Å indicating a predominately illite phase (Fig. 14 C, Huff, 2016). Ethylene glycol (EG) solvation has not caused significant changes in the diffraction pattern (10.069, 5.01 and 3.33 Å), and thus almost pure illite is present without f/S component (Moore and Reynolds, 1997). However examined in detail, EG solvation has produced a weak, broad and bell-shaped reflection near 5° 2θ (d = 17.391 Å) which indicates a small amount of smectite (Moore and Reynolds, 1997). Upon heating to 550 °C-2 h, the diffraction pattern is not changed and resembles a pure illite composition with a sharp peak at 10.069 Å. Kaolinite is present as a minor constituent of clay fraction (Fig. 14 C). In the air-dried sample, kaolinite is noticeable by weak but sharp peaks near 12.35° 2θ (100% intensity, d = 7.151) and 24.9° 2θ
4.3.2. Meta-K bentonite SG-2012-16

Whole-rock XRD analysis shows that it consists of sericite, quartz, alkali feldspar (sanidine), and plagioclase, in agreement to those seen in petrography (Fig. 14B). Alkali feldspars are noticeable through many reflections. Sanidine is visible as a primary volcanic feature of this K-bentonite by a sharp peak at 29.78° 2θ (d = 3.007, Moore and Reynolds, 1997). Nevertheless, their identification comes only from this single peak which is also a reflection partially overlapping with the peak in this position for the sericite. Thus, sanidine is a minor component in the alkali feldspar varieties of this sample.

Prehnite appears as a minor constituent with peaks at ~43.69° (4%), 52.5 (16.6%), 53.3 (46.76%), and 64.99° 2θ (4.51%, 2θ and intensities after Downs et al., 1993). The most intense peaks for prehnite are also interfered by feldspars (Fig. 14B). Sharp peaks for sericite but of low intensity, are noticeable near 35.48° 2θ (2%) and 45° 2θ (12.15%, Tomita et al., 1998). The peak near 26.5° 2θ overlapping with quartz is also present.

In the air-dried sample, the clay fraction of K-bentonite SG-12-16 is also composed predominantly of pure illite, with the main basal reflections at 10.09 Å, 5.01 Å and 3.33 Å (Fig. 14D). As that in AS-3, EG solvation and heating to 550 °C-2 h has not caused significant changes in the diffraction pattern (10.04 and 10.11 Å respectively) confirming the pure illite phase, but smectite is also present as a minor component of the clay fraction (~5° 2θ, d = 17.056 Å). The peaks near 24.9° 2θ (3.618 Å), 27° 2θ (3.268 Å), and 32° 2θ (2.827 Å) indicate that some variety of feldspars is present as a very fine-grained fraction (Moore and Reynolds, 1997).

4.3.3. Illite crystallinity of meta-K bentonites

The crystallinity of illite is frequently used as an indicator of the metamorphic grade in clay-bearing rocks metamorphosed under conditions between diagenesis and low-grade metamorphism (Frey and Robinson, 1999). Thus, measurements of the Kübler index were carried out in both K-bentonites, taking into account that samples analyzed are rich in illite. It is assumed that all the original smectite formed by devitrification of vitroclasts was transformed into illite during metamorphism. Kübler index measurements yielded 0.24 (AVS-3) and 0.25 (SG-12-16) Δθ°, indicating that regional metamorphism which affected meta-K-bentonites is within the greenschist facies field (cf. Merriman and Peacor, 1999), as is corroborated by petrographic analysis.

On the other hand, minor smectite and kaolinite constituents are interpreted as secondary minerals formed from feldspar alteration during weathering of the meta-K bentonites.
5. U-Pb zircon geochronology

Six samples were selected for zircon study by MC-ICPMS-LA and SHRIMP U-Pb methods to constrain the timing of protoliths sedimentation and magmatic crystallization of the El Jagüelito Formation. Sample locations are shown in Fig. 2 whereas GPS and applied methods are in Tables 1 and 2. Standard procedures for zircon separation/mounting and analytical conditions of the U-Pb methods are summarized in the Supplementary materials.

Two out of six samples are meta-conglomerates (AB–282 and SG09–61) which were preferred for the U-Pb zircon analysis because of their magmatic provenance of detrital components and since they are intercalated with the igneous rocks within the same sequence. The other four samples, two are K-bentonites (SG12–16 and AVS–3), and two are ignimbrites (SG09–66 and SG09–75).

5.1. Results

Full U-Pb analytical results are presented in Tables 1, 2, and 3 of the Supplementary materials and illustrated in Figs. 15, 16 and 17. The crystallization and depositional ages are summarized in Tables 1 and 2.

5.1.1. Meta-K bentonite SG12–16

The analyzed volcanic zircons are bipyramidal with well-defined faces to euhedral prismatic (aspect ratio 2:1 to 3:1) and their lengths range from 90 to 150 μm (some exceptionally 200 μm). The backscattered imaging of the grains shows well-developed oscillatory and sector zoning that along morphology and high Th/U values are typical magmatic features. 39 out of 44 analyzed zircons have concordant ages of <10% discordance.

A cluster of fifteen concordant zircons yielded a weighted \({^{206}Pb} / {^{238}U} \) mean age of 515.6 ± 2.2 Ma (MSWD 2.5, Fig. 15 A). Therefore, we interpret the age as the magmatic crystallization of the K-bentonite. One of the remaining zircon grains has a younger \({^{206}Pb} / {^{238}U} \) age of 487 ± 3 Ma which can be interpreted as Pb loss probably due to Ordovician regional metamorphism and deformation. There are four inheritance ages of 581, 672, 1002 and 1120 Ma.

5.1.2. Meta-K bentonite AVS–3

Zircon crystals are short prisms and fragments with axial ratios up to 2:1, while few grains are equant, and lengths minor and around 100 μm. CL images show generally bright luminescence and oscillatory zoning. The U content is mostly between 0.35 and 1.12, a characteristic consistent with their magmatic origin (Hoskin and Schaltegger, 2003).

Ten crystals (12 spots) were analyzed, with dominant prisms and fragments with axial ratios up to 2:1, while few grains are equant. In the Wetherill diagram (Fig. 16 A) it can be seen that the spots scatter with a variable degree of discordance, showing disturbance by Pb loss and inheritance. The four spots more consistent and close to the Concordia curve define an age of 529.4 ± 8.4 Ma (MSWD 2.4), which is the best date that can be derived and therefore considered the crystallization age of the ignimbrite. A younger cluster of 5 spots (2 outer zones of crystals) defines a mean age of 445 ± 15 Ma (MSWD 5.4) which is considered as Pb loss due to the onset of exhumation for this rock, after peak metamorphism–deformation in Early Ordovician. The three youngest spots in the surroundings of 400 Ma correspond to outer zones of crystals and are considered as also resulting from Pb loss. The remaining eight spots are zircons inherited from sources which ages range between 588 and 1071 Ma (Fig. 16 B).

5.1.3. Meta-ignimbrite SG09–75

20 spots were analyzed from 19 crystals, of which the most are short prisms and fragments with axial ratios up to 2:1, while few grains are equant. In the Wetherill diagram (Fig. 16 A) it can be seen that the spots scatter with a variable degree of discordance, showing disturbance by Pb loss and inheritance. The four spots more consistent and close to the Concordia curve define an age of 529.4 ± 8.4 Ma (MSWD 2.4), which is the best date that can be derived and therefore considered the crystallization age of the ignimbrite. A younger cluster of 5 spots (2 outer zones of crystals) defines a mean age of 445 ± 15 Ma (MSWD 5.4) which is considered as Pb loss due to the onset of exhumation for this rock, after peak metamorphism–deformation in Early Ordovician. The three youngest spots in the surroundings of 400 Ma correspond to outer zones of crystals and are considered as also resulting from Pb loss. The remaining eight spots are zircons inherited from sources which ages range between 588 and 1071 Ma (Fig. 16 B).

5.1.4. Meta-ignimbrite SG09–66

Ten crystals (12 spots) were analyzed, with dominant prisms and fragments with an axial ratio up to 2:1, and minor crystals more equant (Fig. 16 D). Some crystals are fractured, while some others show dark inclusions into inner zones. The degree of age concordance is very poor, and therefore the age is spurious without geological meaning (Fig. 16 C). Nevertheless, two least discordant spots but with high error yielded younger \({^{206}Pb} / {^{238}U} \) ages of 511 and 623 Ma, and also correspond to outer zones of crystals. It is a highly discordant age. However, the 511 Ma is considered as the timing of magmatic crystallization of the ignimbrite. Although this interpretation is rather speculative, the ignimbrite is interbedded in the same volcano-sedimentary sequence of the metaconglomerate SG09-61 which has a Cambrian depositional age (see below).

5.1.5. Meta-conglomerate AB–282

The analyzed detrital zircons are rounded to sub-rounded prisms between 100 and 350 μm of length. The backscattered imaging of the grains shows well-developed oscillatory and sector zoning that along morphology and high Th/U ratios are between 0.35 and 1.12, a characteristic consistent with their magmatic origin (Hoskin and Schaltegger, 2003).

17 spots in 17 crystals were analyzed. The ages show a low degree of concordance as depicted in the Tera Wasserburg diagram of Fig. 15 B. Therefore, the best age is calculated as a weighted \({^{206}Pb} / {^{238}U} \) mean age of 8 spots, with 532.9 ± 7.3 Ma (MSWD 9.1), which is the best date that can be derived and therefore considered the crystallization age of the ignimbrite. A younger cluster of 5 spots (2 outer zones of crystals) defines a mean age of 445 ± 15 Ma (MSWD 5.4) which is considered as Pb loss due to the onset of exhumation for this rock, after peak metamorphism–deformation in Early Ordovician. The three youngest spots in the surroundings of 400 Ma correspond to outer zones of crystals and are considered as also resulting from Pb loss. The remaining eight spots are zircons inherited from sources which ages range between 588 and 1071 Ma (Fig. 16 B).

5.1.6. Meta-conglomerate SG09–61

In transmitted light microscopy images, the zircons from this metaconglomerate are bi-pyramidal to prismatic (aspect ratio 2:1) and have elongate to euhedral prismatic (aspect ratio 2:1 to 3.1) and their lengths major and around 100 μm. The backscattered imaging of the grains shows well-developed oscillatory and sector zoning that along morphology and high Th/U values are typical magmatic features, although there is a range of older ages from 846 to 1169 Ma, but without a notable peak. The remaining zircon grains have concordant \({^{206}Pb} / {^{238}U} \) ages of 391 and 429 Ma which could be interpreted as recent Pb loss. A cluster of seven youngest concordant zircons that contribute to the 526 Ma age probability peak yielded a mean \({^{206}Pb} / {^{238}U} \) age of 510 ± 24 Ma (MSWD 0.032, Fig. 17 E) which we consider as the maximum depositional age of the conglomerate. This age is in the range of likely crystallization ages reported here for the interbedded pyroclastic rocks, and thus we also interpret the 510 ± 24 Ma as the age of the igneous source from which zircons were derived. Three single grains with Ordovician ages yielded a mean \({^{206}Pb} / {^{238}U} \) age of 479 ± 35 Ma (MSWD 0.085) which is interpreted as Pb loss due to regional metamorphism–deformation. There is a range of older ages from 846 to 1169 Ma, but without a notable peak. The remaining zircon grains have younger \({^{206}Pb} / {^{238}U} \) ages of 391 and 429 Ma which could be interpreted as recent Pb loss.

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>GPS (S-W)</th>
<th>Locality</th>
<th>Rock type</th>
<th>Method</th>
<th>Age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC09–66</td>
<td>41°45′20″–65°00′18″</td>
<td>South of Punta Colorado</td>
<td>Rhyolitic ignimbrite</td>
<td>LA-ICPMS</td>
<td>Pb loss</td>
</tr>
<tr>
<td>SC09–75</td>
<td>41°35′03″–65°02′44″</td>
<td>Arroyo Salado at León</td>
<td>Rhyolitic ignimbrite</td>
<td>LA-ICPMS</td>
<td>528.4 ± 8.4</td>
</tr>
<tr>
<td>SG12–16</td>
<td>41°34′42″–65°05′02″</td>
<td>Arroyo Salado at Muisí</td>
<td>Dacitic K-bentonite</td>
<td>SHRIMP</td>
<td>515.6 ± 2.2</td>
</tr>
<tr>
<td>AVS–3</td>
<td>41°28′39″–65°20′04″</td>
<td>Herradura del Arroyo Salado</td>
<td>Dacitic K-bentonite</td>
<td>SHRIMP</td>
<td>532.9 ± 7.3</td>
</tr>
</tbody>
</table>
colorless and their lengths range from 10 to 100 μm, with minor crystals of up to 200 μm (Fig. 17 C). Bi-pyramidal to prismatic zircon morphologies are typical of igneous sources. The magmatic provenance of detrital components is revealed by pebbles of andesites, trachytes, trachyandesites, pumice, and granitoids (Fig. 12 F), also corroborated by these zircon morphologies. The total of 39 zircon grains yielded concordant ages of <10% discordance (Fig. 17 C). The sample has a bimodal age distribution (Fig. 17 D). One main peak is at 533 Ma, with slightly older one at 555 Ma. The second main population is at 990 Ma, with the spread of ages between 878 and 1057 Ma. There are two single ages of 1891 and 2638 Ma. A cluster of six younger concordant zircons that contributes to the 533 Ma age peak yielded a 206Pb/238U mean age of 516 ± 9 Ma (MSWD 0.97, Fig. 17 F) which we consider as the maximum depositional age of the conglomerate. This age is in the age of 516 ± 9 Ma (Fig. 18 A, B). This Hf-isotope composition of zircons indicates the presence of recycled older crustal material in the source region of the metagranulite SG09-61.

6. Geochemistry

Whole-rock powders of seven selected samples for geochemical analyses were prepared at Centro de Investigaciones Geológicas (UNLP-CONICET) using standard jaw-crushing and rings-mill. Six out of the seven samples are the same as those dated in this contribution (Table 1). Samples were sent to ACTLABS and ACMELABS (Canada), for whole-rock major and trace element analyses using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) methods. The localities of the analyzed samples are shown in Fig. 2 and Table 1. The full data set for whole rock analytical results is summarized in Table 4 of the Supplementary materials. Major elements data used in geochemical diagrams were recalculated to 100% on an anhydrous basis.

Although some of the major and trace elements such as Cs, Rh, Sr, and Ba are known to be mobile under regional metamorphism, and also weathering and hydrothermal alteration, the REEs, HFSE (such as Ti, Y, Zr, Nb, Hf and Ta), Th, Sc, V, Cr, and Ni are thought to remain relatively immobile during a wide range of metamorphic conditions (Pearce and Norry, 1979; Wood et al., 1979; Ludden et al., 1982; Hastie et al., 2007). Thus, mainly immobile elements were used here to characterize the geochemical features of the metamorphosed volcanic and pyroclastic rocks of the El Jagüelito Formation. It is noteworthy that the Winchester and Floyd (1977) and Hastie et al. (2007) diagrams are

Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>GPS (S-W)</th>
<th>Locality</th>
<th>Rock type</th>
<th>Method</th>
<th>Age (Ma)</th>
<th>Youngest peak</th>
<th>Youngest zircons*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG09-61</td>
<td>41°45'14"-65°00'35"</td>
<td>South of Punta Colorada</td>
<td>Meta-conglomerate</td>
<td>LA-ICPMS</td>
<td>533</td>
<td>515±8.7</td>
<td></td>
</tr>
<tr>
<td>AB-282</td>
<td>41°39'02"-65°25'15"</td>
<td>West of Sierra Grande</td>
<td>Meta-conglomerate</td>
<td>LA-ICPMS</td>
<td>526</td>
<td>510±24</td>
<td></td>
</tr>
<tr>
<td>SG05-3</td>
<td>41°32'28"-65°10'43"</td>
<td>Arroyo Salado creek</td>
<td>Meta-greywacke</td>
<td>LA-ICPMS</td>
<td>556</td>
<td>533±26</td>
<td></td>
</tr>
<tr>
<td>SGR-018</td>
<td>41°34'43"-65°05'18"</td>
<td>Arroyo Salado creek</td>
<td>Meta-sandstone</td>
<td>SHRIMP</td>
<td>535</td>
<td>515.5±5.5</td>
<td></td>
</tr>
</tbody>
</table>

* Number of grains: SG09-61 = 6; AB-282 = 7; SG05-03 = 6; SGR-18 = 5.
* Recalculated from Pankhurst et al. (2006).
* Recalculated from Naipauer et al. (2010).
ideal for weathered and metamorphosed rocks as these plots use immobile trace elements.

In the Winchester and Floyd (1977) diagram, both K-bentonites and the lava flow/sill AB-289 (SiO$_2$ = 71.22%) are classified as subalkaline dacites whereas the ignimbrites SG09-75 and SG09-66 plot within the subalkaline rhyolite and peralkaline rhyolite (comendite/pantellerite) fields respectively (Fig. 19 A). The Nb/Y and Zr/TiO$_2$ ratios of the lava flow SG09-67 (SiO$_2$ = 73.31%) and the cryptodome SG12-11 (SiO$_2$ = 70.17%) are transitional to the subalkaline dacite field.

The SiO$_2$ content of SG09-75 (76.76%) and SG09-66 (79.73%) are high indicating that they are high-silica rhyolitic ignimbrites. Although both rocks can be classified as peralkaline comenditic rhyolites or comendites according to the method of Macdonald (1974; Al_2O_3N(1.33 × FeOT) + 4.4), they are not peralkaline rocks because they do not contain phenocrysts of alkali pyroxene/amphibole, its peralkaline index (P.I. = mol Na$_2$O + K$_2$O / Al$_2$O$_3$, Le Maitre, 2002, see Table 4 of the ESP) is <1.0 and they are not strongly enriched in REEs-HFS elements. According to Leat et al. (1986), the Zr content can be used to classify the high-silica rhyolitic ignimbrites SG09-75 (125 ppm) and SG09-66 (128 ppm) is <300 ppm, indicating that these rocks were part of a subalkaline volcanic series.

The SiO$_2$ and K$_2$O contents of the K-bentonites are 52.78–9.83% for SG12-16 and 67.15–6.14% for AVS-3 whereas the Al$_2$O$_3$ contents are 29.74% (SG12-16) and 20.62% (AVS-3). Their K$_2$O contents are in accordance with the potassium-rich feature of the K-bentonites; major element which is essentially contained in the nearly pure illite identified by XRD analyses. In SG12-16, the SiO$_2$ content is low for a dacite, but with regards to quartz phenocrysts as a petrographic feature and the Zr/TiO$_2$ and Nb/Y ratios as a measure of silica differentiation and as an index of alkalinity respectively (Winchester and Floyd, 1977), this K-bentonite was derived from a felsic dacitic subalkaline magma rather than a more primitive one.

The major element geochemistry of bentonites is a particular issue that should be treated with care since these rocks come from alteration of ash fall layers under sea water in a marine environment. Seawater leaches away some of the ions during the alteration reactions that occur in subsequent diagenesis, and thus the major elements usually undergo post-depositional changes. It should be noted that the low-silica and high-alumina contents in SG12-16 bentonite, and also in AVS-3 but to a lesser extent, seem to have been related to major-element mobilization from diagenesis when devitrification of the volcanic ash and formation of smectite took place, to regional low-grade metamorphism that formed the illite. In this regard, the origin of gains of Al and K, and loss of Si has been a matter of debate, and there are
several explanations (Huff and Türkmenoglu, 1981). The increase in alkalinity is consistent with submarine weathering of calc-alkaline volcanic rocks to smectite (Perry et al., 1976) whereas hypersalinity in seawater has also been cited as a concentration mechanism for K in K-bentonites (Huff and Türkmenoglu, 1981). It is noteworthy that tetrahedral substitution of Al$^{3+}$ for Si$^{4+}$ in original smectite during diagenesis creates a high layer charge which, in turn, is compensated by K dehydroxylation and fixation (Eslinger et al., 1979). Al$_2$O$_3$ is increased, and the Al$_2$O$_3$/K$_2$O ratio decreases with the increase of the metamorphic grade (Huff and Türkmenoglu, 1981). Thus, in K-bentonite SG12-16 the coupled substitutions of Al$^{3+} +$K$^+$ for Si$^{4+}$ seems to be the most reasonable mechanism for bulk rock Al$_2$O$_3$-K$_2$O gains and SiO$_2$ loss.

In alumina saturation indices ASI (Shand, 1927) and Th-Co discriminating diagram (Hastie et al., 2007), the El Jagüelito samples plot as peraluminous and belong to high-K calc-alkaline/shoshonitic magma series respectively (Fig. 19 B, C). In the petrographic regard of ASI, a rhyolite lava flow or sill consanguineous with AB-289 display minor garnet phenocrysts indicating the peraluminous character of the parental magma. Although the key peraluminous feature for K-bentonites should be treated with care due to the apparent alumina and alkalis mobilization, they plot coherently along a same evolutionary trend representing a primary geochemical feature of magma, and therefore major-element mobilization seems to be of minor importance.

The REEs and HFSE patterns of K-bentonites are coherent and subparallel concerning each other, and thus they behaved as immobile elements during orogenesis. The chondrite-normalized (Gromet et al., 1984) HFSE diagrams show a relative enrichment in LIL elements and a relative depletion in Nb, Sr, P, and Ti (Fig. 19 D), which are characteristics of subduction-related magmas (Baier et al., 2008).

The chondrite-normalized (Nakamura, 1974) REE diagrams display relative enrichment in light REE with a negative Eu anomaly which is more pronounced in the high-silica rhyolitic ignimbrite SG09-66 (Fig. 19 E). Compared to the other rocks, SG09-66 is enriched in heavy REE whose total content and pattern are almost identical to that pattern of the K-bentonite SG12-16, therefore indicating that they share a common source (Section 7.3).

Finally, although the Cambrian volcanic and pyroclastic rocks of the El Jagüelito Formation underwent regional low-grade metamorphism and deformation, their whole-rock geochemical analyses still closely reflect primary magmatic features. Trace and rare earth elements together

Fig. 17. A, C. Tera-Wasserburg diagrams of detrital zircon data from metaglomerates AB-282 (A) and SG09-61 (C). Error crosses for individual analyses are 1σ (68.3% conf.). Insets show selected back-scattered (A) and transmitted light microscopy (C) images of typical zoned igneous zircon grains of analyzed samples. B, D. Relative probability plots of preferred U-Pb inheritance ages and frequency histogram of inherited zircons from metagglomerates AB-282 (B) and SG09-61 (D). E, F. 206Pb/238U ages of those younger concordant spots used to derive the weighted mean maximum depositional ages of the metaglomerates AB-282 (E) and SG09-61 (F). Error bars show the standard deviation for each spot age. The full data sets of analytical results are available in Table 1 of the Supplementary material. See locations of the samples in Fig. 2.
are conspicuous for deducing magma sources and are effective petrologic tracers for inferring the tectonic setting as shown below.

7. Discussion with interpretations

7.1. The volcano-sedimentary environment, volcanic facies, and eruptive centers

The original sedimentary character of protoliths of the low-grade El Jagüelito Formation (Ramos, 1975; Giacosa, 1994) has been improved by successive findings of magmatic protoliths which are interbedded in the sedimentary sequence. Thus, a wider variety of protoliths and therefore, geological processes, were involved in eastern North Patagonian basement before Early Ordovician regional metamorphism-deformation and magmatism took place.

Fig. 20 depicts five tectonostratigraphic sections of El Jagüelito Formation and their lithological comparison with other basement units of the eastern North Patagonian Massif. Within the El Jagüelito Formation exposures, a special correlation can be established between acidic sub-volcanic and volcano-pyroclastic complexes and their proximal syn-eruptive deposits which are more evident to the east of the Sierra Grande area, between León farm and Punta Colorada, whereas air-fall cloud pyroclastic and volcanogenic deposits belonging to distal co-magmatic facies are characteristic towards the west (Figs. 2, 20, present geographical coordinates).

In Leon farm, the intimate association of a silicic eruptive cryptodome, explosive and effusive rocks, also interbedded by syn-eruptive reworked deposits and reworked primary pyroclastic deposits is typical of the shallow water explosive subvolcanic complex (Gifkins et al., 2005a; McPhie et al., 1993). The abundance of trace fossils
further supports the subaqueous, shallow marine environment in the interbedding pelitic sediments, the quenched volcaniclastic deposits and hyaloclastite and the widespread albite alteration of plagioclase due to seawater–diagenetic alteration/hydrothermal metamorphism. Or even more, by traction current sedimentary structures and bedforms in resedimented syn-eruptive volcaniclastic deposits. Similarly, the hyaloclastite and hyaloclastic breccia are common lithological features in a carapace of domes erupted in the subaqueous environment, owing to intense quench fragmentation and intruding into soft, water-saturated sediments (Stewart and McPhie, 2003; Németh et al., 2008).

Thus, the partly eroded, subaqueous volcanic center in Leon farm is interpreted as the result of shallow marine volcanic eruption coeval with marine sedimentation. The cryptodome preserves both intrusive and extrusive features whereas the ignimbrite, pumice sandstones, and pumice siltstones are related subaqueous facies (Fig. 8). The collapse of a growing shallow subaqueous cryptodome generated the proximal facies of ignimbrite and pumice sandstones.

In the area south of Punta Colorada, subaerial pyroclastic flow and lava flow produced by explosive and effusive eruptions occur in association with co-magmatic sub-volcanic intrusive bodies, as part of a same...
Fig. 20. Correlation of schematic tectonostratigraphic sections along East-West cross-section of the El Jagüelito Formation based on our comprehensive data, the interpreted episode of regional metamorphism-deformation and post-orogenic magmatism from Punta Sierra Plutonic Complex. A lithological comparison with other basement units from eastern North Patagonian Massif is also depicted. Location of all sections is shown in Fig. 2. Age of sedimentary cover of the Sierra Grande Formation based on Manceñido and Damborenea (1984), Rustan et al. (2013), and Siccardi et al. (2014). Mina Gonzalito Complex section based on González et al. (2008b), Greco et al. (2014), Varela et al. (2011), and Pankhurst et al. (2006). Nahuel Niyeu-Valcheta section based on Pankhurst et al. (2006), Gozalvez (2009), Rapalini et al. (2010, 2013), and Greco et al. (2015, 2017). Yaminue Complex section based on Caminos (1983, 2001), Chernicoff and Caminos (1996), Chernicoff et al. (2013), Rapalini et al. (2013), and Pankhurst et al. (2014). See details in the text.
volcano-pyroclastic complex (Fig. 20). They are also linked to volcanogenic conglomerates containing clasts derived from volcanic and pyroclastic rocks and deposited shortly after or synchronously with eruptions. The subaerial environment setting is suggested by the predominance of coherent volcanic or pyroclastic textures (porphyritic and eutaxitic) over quenched fragmentation textures (hyaloclastite) of a subaqueous setting such as those recorded in volcanogenic rocks of the León farm. This dacitic-to-rhyolitic subaerial volcanic center is also well preserved and contemporaneous with deposition of reworked syn-eruptive volcanic and marine sedimentary protoliths. However, as subaerial volcanic rocks are interbedded with marine pelites and psammites, the eruptive center should have been near or very close to the sea. Pyroclastic flows usually run out distances from a few to tens of kilometers and frequently reach coastlines (Cas and Wright, 1991; Sparks and Huang, 1980; McPhie et al., 1993). They form cliffs around active volcanic islands and seaward of hinterland volcanoes. Thus, the Punta Colorada center could have been flooded by seawater, and therefore volcanic edifices may have occasionally been submerged, in total or in part, changing its eruptive style between subaerial and subaqueous intermittently. The syn-eruptive, rapid erosion of volcanic edifices contributes with cognate volcanic clasts to the proximal facies of volcanogenic conglomerates.

West of the Hiparsa Mine, it is likely the dacitic-to-rhyolitic igneous bodies (i.e., dacite AB-289 among others, Fig. 3) can be either bed of silicic lava flows or intrusive sills concordant to S0 bedding of the sedimentary layers. It is documented that the bodies are not dikes since they do not cut across the host sedimentary layers. However, their primary effusive or intrusive features of the bottom and top contacts as either lava flows or sills remains unclear due to extremely limited exposures (e.g., one or both chilled margins, increase of the size and the percentage of vesicles towards the top, weathering surface on top, among others). Also, the thermal effects immediately adjacent to contacts with underlying and overlying rocks are also unresolved from field data; thus they do not help to interpret the primary igneous feature. Although lava flows or sills are interbedded with marine pelites and greywackes, they do not show petrographic feature indicating an interaction between a hot igneous body and cold sea water or wet sediments, for instance quenching of vesicles towards the top, weathering surface on top, among others). Likewise, the effusion ages of ignimbrite SG09-66, K-bentonite SG12-16, and also the syn-eruptive depositional age of the volcanogenic conglomerate SG09-61 are roughly contemporaneous (Tables 1 and 2). Although the scarcity in the degree of c. 511 Ma U-Pb age concordance of magmatic crystallization of the ignimbrite (Fig. 16 C), it is interbedded in the same volcano-sedimentary sequence close to conglomerate SG09-61 (Fig. 10) which has a 515.8 ± 8.7 Ma maximum depositional age (Fig. 17, Table 2) and a youngest zircon of 501 ± 11 Ma (Table 1 of the Supplementary materials). Thus, considering the 515 Ma age and that provenance of clasts and zircons in the conglomerate are predominantly volcanic, both rocks could be contemporary, belonging to proximal facies of the Punta Colorada eruptive center. The date of 511 Ma advises that the effusion age of the ignimbrite can be close to the maximum depositional age of the conglomerate.

In volcanogenic conglomerate SG09-61, provenance from juvenile cognate volcanic and pyroclastic sources is revealed (Section 4.2, Figs. 11 C, 12 F). Considering their 515.8 ± 8.7 Ma syn-eruptive depositional age, the most likely proximal source area of volcanic and vitroclastic components is the contemporaneous Punta Colorada eruptive center – and equivalents – which is composed of those rocks (Fig. 20). Inputs from the adjacent older Leon center is also likely, as revealed by the younger prominent zircon population around 533 Ma which is interpreted as the age of the source from which zircons were derived and is almost indistinguishable from the magmatic effusion age of the Leon eruptive center and K-bentonite SG12-16 (Figs. 15, 16).

The K-bentonite SG12-16 has a distinct extrusion age of 515.6 ± 2.2 Ma which is indistinguishable from the 515.5 ± 5.5 Ma maximum depositional age of the host sandstone SGR-018 (Fig. 7, Table 2; data recalculated from Pankhurst et al., 2006), even from the 515.8 ± 8.7 Ma age of the volcanogenic conglomerate SG09-61. Collectively, the set of ages constrains the second eruptive stage to c. 515 Ma (Cambrian, Ages 3–4). In addition, K-bentonite is geochemically similar to ignimbrite SG09-66 thus indicating that they might be consanguineous (Fig. 19). The most likely source of the proximal ignimbrite SG09-66 and distal K-bentonite SG12-16 is the Punta Colorada volcanic center, besides volcanic and pyroclastic detritus in sandstone SGR-018 and conglomerate SG09-61, were probably derived from this volcanic center.

In conglomerate AB-282 which has an essentially magmatic provenance of detrital components and also contains the Archean rift-limestone blocks, the concordant U-Pb age of 510 ± 24 Ma provides a Cambrian, Stage 4 depositional age. The occurrence of an unexposed limestone unit, contemporaneous to the volcanism and the siliciclastic sedimentation, is inferred as a source of the limestone blocks.

Archeocyaths are a benthic group of mostly sessile organisms which inhabited the carbonate shelf and reef environments of the Cambrian seas (Hill, 1972), and thus an Early Cambrian carbonate platform deposition is reasonable to assume (González et al., 2011a). The
Archeocyathan fossils constrain the depositional age of the source limestone to Atdabanian-Botomian (521–513 Ma, Stage 3 to 4; Fig. 20; González et al., 2011a). In this regard, the calcareous sedimentation started after the first stage of synsedimentary volcanism and continued synchronously with eruptions related to c. 515 Ma second stage whereas syn-eruptive siliciclastic sedimentation also continued up to c. 510 Ma or even younger. Thus, deposition of the conglomerate containing volcanic and Archeocyathan limestone clasts should have occurred subsequently, as corroborated by our U-Pb age of 510 Ma.

Radiometric dating does not yet constrain the timing of emplacement of the inferred Hiparsa mine volcanic center near Sierra Grande. However, the emplacement of lava flows/sills should have been roughly synchronous with sedimentary deposition of conglomerate AB-282 in which they are interbedded. Thus, an emplacement age of c. 510 Ma or even younger is assumed for the third inferred eruptive center.

In summary, the volcanism is contemporaneous with siliciclastic and calcareous sedimentation within the same sequence and provides insights into the temporal evolution of a major volcano-sedimentary basin in which protoliths of the El Jagüelito Formation were deposited. The U-Pb ages of the ignimbrite and K-bentonite beds joined to provide the U-Pb maximum depositional ages of volcanogenic conglomerates, and the archeocyathan fossils in limestone clasts constrain the age of the volcano-sedimentary pile of the El Jagüelito Formation between Early and Middle Cambrian.

The Cambrian synsedimentary volcanism is diachronous and distributed in, at least, two main stages, i.e., c. 530 and 515 Ma, with a third stage not well constrained yet but may also be possible at c. 510 Ma.

7.3. Tectonic setting of the El Jagüelito basin and magma sources

Collectively, the geological and geochemical features led to the interpretation that the El Jagüelito volcanic rocks might have erupted in an extensional back-arc basin linked to subduction, behind an active continental magmatic arc (Fig. 21 A).

As it characterizes the El Jagüelito Formation, the alternation of subaerial and subaqueous volcanic and pyroclastic layers, lenses of syn-eruptive volcanicogenic conglomerates and marine siliciclastic beds within the same sequence, also intruded synchronously by subvolcanic bodies are common features in a chain of volcanic islands belonging to a continental volcanic arc (McPhie et al., 1993; Gifkins et al., 2005a, 2005b; Park, 2018). Both together, the active volcanic islands and the syn-eruptive sedimentation arise in a marine environment.

The volcanic arc axis was situated upon and along a continental area with off-axis subaerial to offshore subaqueous volcanoes that form islands on the opposing edge of the subducted slab and also associated with an extensional back-arc basin which, in turn, subsequently lead to the development of a rift-related basin (e.g., Park, 2018). Horizontal tension increases in the upper continental plate due to progressive subduction of the negatively buoyant oceanic lithosphere and backarc opening occurs via rollback of the forearc block (Lallemand et al., 2008; Boutelier and Cruden, 2013). This geodynamic scenario seems to be the most reasonable tectonic setting to eruption-to-deposition of the synsedimentary volcanism within the El Jagüelito marine trough as part of a major back-arc basin (Fig. 21 A).

From the geochemical point of view, many discrimination diagrams were proposed to infer characteristic magma series associated with specific tectonic settings (e.g., Wilson, 2007 and many references therein). Here, we bring geochemical discrimination diagrams and geological features together to discuss the tectonic setting of synsedimentary volcanism about magmatic arc/back-arc system.

Regardless of the diachronicity of three eruptive centers of the El Jagüelito Formation, its volcanic rocks belong to the same subalkaline, high-K calc-alkaline/shoshonitic magma series and share the same peraluminous trend (Fig. 19 A, B, C). Thus, all dacites-to-rhyolites derived from or have closely similar magmatic sources. Their consanguinity is also revealed by the HFSE and REEs patterns and total element contents which are coherent and sub-parallel between each other (Fig. 19 D, E).

The HFSE patterns with relative depletion in Nb, Sr, P, and Ti (Fig. 19 D) and REE patterns with negative Eu anomaly indicate characteristics of subduction-related magmas, associated to active continental arc magmatism (Pearce et al., 1995; Baier et al., 2008). Sr- and Eu-depleted magma as being separated from the plagioclase gave rise to their negative anomalies (Blundy and Wood, 1991). Extreme plagioclase fractionation seems to have occurred in more fractionated high-silica rhyolitic ignimbrites to develop the large negative Eu anomaly.

In the discrimination Th/Y-Ta/Y diagram of Gorton and Schandelmeier (2000) the samples plot transitionally in the fields of active continental margin and within-plate volcanic zones (Fig. 22 A, B). Overlaps between I & S- orogenic and A-type anorogenic fields and volcanic arc and within-plate fields are also evident in the discrimination diagrams of Whalen et al. (1987) and Pearce et al. (1984) respectively (Fig. 22 C, D). Thus, the behavior of trace and rare earth elements suggests that the tectonic setting of magmas associated to El Jagüelito synsedimentary volcanism could have been associated with an extensional environment within the overall convergent-margin system (e.g., Münker et al., 2004; Dokuz et al., 2006). In this regard, the volcanic rocks of the El Jagüelito Formation are not strongly enriched neither in total REE nor in Sr-P-Zr-Hf contents (Fig. 19 D, E), which are typical geochemical features of within-plate continental rift volcanism (Smedley, 1986; Eby, 1992), and therefore an intraplate tectonic setting to synsedimentary volcanism is unlikely.

The more potassic felsic magmas with inherited subduction-related character of the El Jagüelito Formation erupted in an extensional back-arc setting probably derived from asthenospheric mantle and the continental crust (e.g. Klewin and Shirey, 1992; Keller et al., 2002; Münker et al., 2004; Dokuz et al., 2006; Pearce and Stern, 2006; among others).

Coeval mafic volcanic rocks are absent, and thus the direct involvement of a mantle source in the genesis of the El Jagüelito volcanic rocks seem to be unlikely whereas their felsic rocks are mainly thought to be generated by partial melting of crustal rocks. The peraluminous nature and Nb negative anomaly of dacitic K-bentonites and high-silica rhyolitic ignimbrites may indicate a crustal involvement in magma processes (Rollinson, 1993), via crustal melting and fractional crystallization (Rudnick, 1992). Nevertheless, there seems to be more than one simple source involved in the generation of felsic magmas, as is characteristic of a back-arc setting in which are involved both the asthenospheric mantle and the continental crust (Keller et al., 2002; Pearce and Stern, 2006).

The HFSE and REE patterns and the high-K calc-alkaline/shoshonitic feature of felsic rocks indicate that magma generation has melts contribution from the supra-subduction zone and continental lithosphere (e.g., Rollinson, 1993; Baier et al., 2008). Coupled with increasingly larger negative Eu anomalies indicate the contribution of progressively more evolved crustal melts, consistent with low-pressure plagioclase fractionation which is typical of processes in crustal magma chambers (Murphy, 2007).

On account of a mantle contribution to felsic rocks, Sr depletion coupled to nearly flat heavy REE pattern between Gd and Lu (Fig. 19 D, E) can be interpreted as disequilibrium during spinel-rich and garnet absent peridotite partial melting in the MORB source asthenospheric mantle (Tang et al., 2012). MORB-like derived melts of asthenospheric mantle that were variably enriched in light REE and LILE by melts from lithospheric mantle and/or continental crust is the most likely source for rocks from extensional settings (Waresham et al., 2001; Curtis et al., 1999; Storey et al., 1996, among others). In addition, the pronounced negative Nb anomaly in these subduction-related volcanic rocks (Fig. 19 D) may be explained by the retention of a Nb-bearing phase in the mantle during hydrous melting of the mantle wedge above the subduction zone (Smedley, 1986).
In the Rb/Nb vs. Y/Nb diagram of Eby (1992), the samples plot mostly in the A2 field of the post-collisional, post-orogenic and anorogenic magmas derived from K-rich infra-crustal igneous sources, but a minor derivation from A1 rift-related OIB mantle source seems to be also likely (Fig. 22E).

The K-bentonites, ignimbrites, and related volcanogenic rocks can be broadly interpreted as products of a mixture between fractionated mafic magmas and partial crustal melts. They would have probably been formed in response to underplating of mafic magmas beneath the arc/back-arc system that produces partial melting of crustal rocks. In convergent and extensional settings, fractional crystallization rather than crustal melting is predominantly responsible for the production of intermediate and felsic magmas, emphasizing the role of mafic cumulates as a residue of crustal differentiation (Keller et al., 2015).

In the eastern North Patagonian Massif, mafic magmas did not erupt on the surface, and thus it can be interpreted that they were emplaced at depth. The near-circular Arroyo Salado and Cerro El Fuerte highs are part of a larger positive gravity anomaly that extends offshore (see Fig. 5 of Gregori et al., 2013) and comprises the Leon and Punta Colorada volcanic centers (e.g., compare with Fig. 2). In the subsurface, these anomalies can be re-interpreted as mainly contributed by underplated mafic magmas beneath North Patagonian Massif.
7.4. Cambrian geodynamic scenario for the North Patagonian Massif

Fig. 20 depicts tectonostratigraphic sections across the three distinct basement areas of the eastern North Patagonian Massif (see also Fig. 2 for the location of the areas). From Northwest to Southeast, the basement rocks in Yaminué-Nahuel Niyeu, Mina Gonzalito-Sierra Pailemán and Sierra Grande-Arroyo Salado areas shared a common geological evolution during the Early Paleozoic. Regional correlations between them point towards the volcano-sedimentary sequence of the El Jagüelito Formation that has striking lithological and geochronological similarities to Cambrian sequences of the Nahuel Niyeu Formation and Mina Gonzalito Complex. Considering a magmatic arc-back arc system as the most likely Cambrian geodynamic setting to the El Jagüelito Formation, the relative position of all these units across the arc is the forearc Nahuel Niyeu Formation (Greco et al., 2017) and also possibly the Mina Gonzalito Complex, and the magmatic arc represented by Tardugno Granodiorite and equivalents (Pankhurst et al., 2014).

A special correlation can be established among coeval volcanic protoliths on both sides of the magmatic arc, i.e., between the forearc Nahuel Niyeu Formation and the back-arc El Jagüelito Formation (Fig. 21A). Thus, volcanic eruptions coming from the arc deposited multiple volcanic ash layers, later transformed to illite-rich K bentonites, ignimbrites and lava flows in the adjacent forearc and back-arc basins, but with dissimilar geochemical features due to its different tectonic settings. There seems to be a spatial zonation of the magmatic suites across the arc which is successively more potassium-rich towards the back arc (e.g., see Morrison, 1980; Hastie et al., 2007).

Fig. 22. Geochemical discrimination diagrams for Cambrian volcanic rocks of the El Jagüelito Formation compared to synchronous volcanic rocks from Antarctica. A, B, C. Trace elements features of the sub-alkaline, high-K calc-alkaline/shoshonitic rocks indicate that volcanism occurs in a tectonic setting transitional between an active continental margin and within plate zone. D. Cambrian volcanic rocks plot transitional between I & S- and A-type magmatism. E. Cambrian volcanism from El Jagüelito Formation and East Antarctic margin are mainly derived from A1 infracrustal igneous sources and minor A2 OIB-like mantle source. References for Antarctic rocks as in Fig. 19.
Within the Nahuel Niyeu exposures, synsedimentary volcanism is present as 513 Ma tholeiitic composite sills and dikes, three horizons of tuffs (K-bentonites?) and a number of beds of subaqueous lava flows of tholeiitic pillow basalts and andesites among others, but without age constraint yet (Greco et al., 2015, 2017). They are all close to the synsedimentary tuffaceous formations known as 513 Ma tholeiitic composite sills and dikes, three horizons of the El Jagüelito Formation and allow proposing a parautochthonous origin of the Nahuel Niyeu Formation (Pankhurst et al., 2006; Rapalini et al., 2013; Greco et al., 2017) in which tuffs are interbedded and support tuff correlation as marker horizons between the forearc and the back-arc basins. Thus, the c. 515 Ma second eruptive stage of the back-arc basin is also recorded in the forearc region. However, given that most of the forearc volcanic beds are not yet constrained by radiometric dating, e.g., pillow basalts and andesites, we can envisage magmatic crystallization ages older than 515 Ma for synsedimentary volcanism of the Nahuel Niyeu Formation, and then Early Cambrian ages associated with the first eruptive stage cannot be completely ruled out in the forearc basin.

The calc-alkaline, subduction-related magmatism emplaced in the axis of the magmatic arc is represented by Early Cambrian granitoids of the Tardugno Granodiorite (SHRIMP U-Pb zircon ages of 529, 526 and 522 Ma, Rapalini et al., 2013; Pankhurst et al., 2014) which is tectonically juxtaposed against Nahuel Niyeu Formation (von Gosen, 2003). The U-Pb zircon ages allow including Tardugno Granodiorite as the plutonic equivalent of the volcanic rocks related to the first eruptive stage.

The country rocks of the Tardugno Granodiorite are considered to be part of the volcanic-sedimentary sequence of the Nahuel Niyeu Formation (Caminos, 2001) or may even be older and of Precambrian age (Chernicoff et al., 2013). Together with petrological and geochemical information, Pankhurst et al. (2014) considered a previously suggested idea of Dalla Salda et al. (1992) that these Cambrian granitoids represent a southern continuation of the Pampean orogenic belt of the Sierras Pampeanas as part of the autochthonous margin of Gondwana (Fig. 1A). However, our alternative interpretation does support the hypothesis of Ramos and Naipauer (2014) that Patagonia is the conjugate margin of the inboard Pensacola Mts., and thus the magmatic arc-back arc system is paraautochthonous being originated in Antarctica and accreted to the southwest Gondwana margin. The arguments supporting this idea are reviewed below in Sections 7.5 and 7.6.

Most of the El Jagüelito and Nahuel Niyeu sediments are syn-eruptive and were supplied from the active magmatic arc which retreats in step with the roll-back of the slab plate. Multi-proxy sediment provenance data from greywackes, sandstones and pelites of the El Jagüelito (Huber-Grünberg, 1990; Giacosa, 1997; Dalla Salda et al., 2003a) and Nahuel Niyeu formations (Cagnoni et al., 1993; Greco et al., 2017), such as petrographic and whole-rock geochemical analyses, heavy minerals and DRX patterns, indicate the main inputs of calc-alkaline, intermediate to acidic magmatic sources in detrital components which could have been supplied from volcanic and pyroclastic rocks exposed along a volcanic front at early to Middle Cambrian age magmatism in the source area of greywackes and sandstones is corroborated by their maximum depositional ages. Two clusters of younger zircon ages of 533 ± 26 (sample SG05-3, Naipauer et al., 2010) and 515 ± 5 Ma (sample SCR-018, Pankhurst et al., 2006) are equal to the first and second eruptive stages respectively of the synsedimentary magmatism of the El Jagüelito Formation (Section 7.2 and Tables 1 and 2) whereas in the Nahuel Niyeu Formation, the 515 and 516 Ma maximum depositional ages (Pankhurst et al., 2006; Rapalini et al., 2013; Greco et al., 2017) agree with a second eruptive stage.

Further evidence of Cambrian sedimentation and magmatism is in the Mina Gonzalito Complex which was lithologically considered as the higher grade metamorphic equivalent of the El Jagüelito Formation (Caminos and Llambías, 1984; Giacosa, 1987, 1994; Fig. 20). Concerning the volcanic protoliths, but without age constraint yet, amphibolites and felsic meta-volcanic rocks were considered as the metamorphic equivalents of tholeiitic basalts and andesites-to-ryholites respectively (Dalla Salda et al., 2005; González et al., 2008b).

The deposition of siliciclastic protoliths in the Early Cambrian is constrained by U-Pb detrital zircon analyses of two paragneisses that yielded youngest age peaks at c. 540 Ma (Pankhurst et al., 2006) and c. 525 Ma (Greco et al., 2014). Additionally, an orthogneiss with SHRIMP U-Pb studies has disclosed a Furonian magmatic crystallization age of 492 ± 6 Ma (Varela et al., 2011).

The intimate association of siliciclastic sedimentary and maflc volcanic protoliths, also interbedded with limestones (Dalla Salda et al., 2003b) within the same sequence of the Mina Gonzalito Complex was considered as a supracrustal assemblage deposited along active continental margin in late Cambrian (Dalla Salda et al., 2005), in close analogy to the Nahuel Niyeu-El Jagüelito pair.

In summary, a magmatic arc-back arc system is the most likely Early-to-Middle Cambrian geodynamic setting for all basement rocks of the eastern North Patagonian Massif. Although there may be a complete gradation between the Nahuel Niyeu-Tardugno, Mina Gonzalito, and El Jagüelito magmatic suites, more K-rich magmas of the El Jagüelito Formation could be generated by successively steepening the subduction zone (e.g., Morrison, 1980). A slab roll-back should be an appropriate tectonic mechanism that probably produced extension with block tilting and high-K calc-alkaline/shoshonitic magmas above the subduction zone. The extension may occur on the oceanward side of the volcanic front, and the magmas may be generated as a consequence of extensional tectonics (Wilson, 2007). The magmas associated with landward-off-axis subaerial volcanoes and oceanward-off-shore submarine chain of the volcanic island from El Jagüelito Formation are more alkali than the subduction-related tholeiitic calc-alkaline magmas of the Nahuel Niyeu Formation and Tardugno Granodiorite respectively (Figs. 20, 21A). Then, there is a spatial zonation of the magmatic suites across the arc which is successively more potassium-rich towards the back arc.

7.5. Patagonia-Antarctica Early Paleozoic conjugate margins

We attempt here a comprehensive lithologic, tectono-stratigraphic, geochemical and HF isotope, and U-Pb geochronologic comparison between basement rocks of the eastern North Patagonian Massif and several Early-to-Middle Cambrian units from the western margin of East Antarctica, i.e. the Gambacorta and Patuxent formations of the Pensacola Mts. (Storey et al., 1996), the Liv Group of the Queen Maud Mts. in Transantarctic Mountains (Wareham et al., 2001), the Heritage Group of the Ellsworth-Whitmore block (Curtis et al., 1999), and the Thiel Mountain porphyry (Pankhurst et al., 1988), to evaluate the tectonic hypothesis of Ramos and Naipauer (2014) in which the eastern North Patagonian Massif was the conjugate margin of the Pensacola Mountains during the Early Paleozoic. Overall similarities of the Archeocyath fauna is fairly well analyzed since these fossils are strongly provenance markers and good for biostratigraphic correlation across Gondwana continent.

Collectively, our results sustain the Antarctic connection of the El Jagüelito Formation and allow proposing a paraautochthonous origin of the eastern North Patagonian Massif to Gondwana, as an outboard assemblage which was the conjugate margin of the inboard Pensacola-Queen Maud-Ellsworth Mountains in East Antarctica during Cambrian times (Fig. 21).

The similarities of geological evolution along Patagonia-Antarctica conjugate margins are Cambrian synsedimentary volcanic and
pyroclastic rocks, volcanogenic conglomerates, Archeoeythyan limestone and conglomerates with volcanic and fossiliferous limestone clasts derived from coeval units, which are all interbedded in siliciclastic rocks as part of the same sequence. The magmatic crystallization ages of the Antarctic counterpart can also be distributed among the three eruptive stages, as is described in this contribution to the El Jagüelito Formation, and even volcanic beds are petrographically and geochemically analogous between each other.

7.5.1. Lithologic and geochronologic comparison

Concerning the first and second eruptive stages, the forearc Nahuel Niyeu and back-arc El Jagüelito volcanic beds are synchronous to volcanic rocks of the Liv Group from the rift-related Antarctic margin (Fig. 21A). In this regard, the Nahuel Niyeu-El Jagüelito pair is parallel to some beds of dacitic tuffs, ignimbrites and dacites interbedded in argillites, shales, sandstones, and conglomerates with volcanic clasts of the Wyatt and Ackerman formations of the Liv Group. U-Pb zircon ages of 526 ± 2 Ma on ash-flow tuff and 524 ± 2 Ma on dacitic lava flow of the Wyatt and Ackerman formations respectively (Encarnación and Grunow, 1996) point to the timing of their eruption from a subaerial caldera complex implanted on rift shoulders to Early Cambrian (Encarnación et al., 1999; Wareham et al., 2001).

Although Wyatt and Ackerman’s formations are somewhat younger than the 533–529 Ma range of effusion ages in the back-arc, we consider them as roughly coeval and include them as an Antarctic counterpart of the first eruptive stage since they share the same geochemical features as the El Jagüelito volcanic rocks, suggesting consanguinity in the same extensional tectonic setting (Figs. 19, 22, see also below).

Belonging to the second eruptive stage, the younger 519–516 Ma bimodal suite from the Taylor and Leverett formations of the same Liv Group may correlate with the c. 516 Ma tholeiitic basalts to andesites and 513 Ma composite sills and dikes of the Nahuel Niyeu Formation (Greco et al., 2015). Additionally, tuff horizons of c.516 Ma (Greco et al., 2017) and 515 Ma dacitic-to-rhyolitic K-bentonite and ignimbrite of the Nahuel Niyeu and El Jagüelito formations respectively are key correlatives of the 516 ± 6 Ma meta-rhyolite and 515 ± 4 Ma felsic rocks of the Taylor and Leverett formations (Van Schmus et al., 1997), and even of the 512 ± 14 Ma hyaloclastite (Rees et al., 1997) of the Heritage Group at Heritage Range, Ellsworth Mts. In this latter group, the c.3000 m thick sequence of basal terrestrial lahars, ash-flow tuffs, and 512 Ma hyaloclastite predominate over the top successions composed predominantly of interbedding basalts, less basaltic andesites, and minor silicic rocks and polymictic conglomerates (Conglomerate Ridge Formation with granite clasts dated at 532 ± 5 and 525 ± 2 Ma, Rees et al., 1995). Within the Early Paleozoic Heritoge Group, the association of rapid lateral facies changes, the presence of dominantly felsic bimodal volcanism, and syn-extractive extensional faults associated with volcanic centers support an extensional tectonic setting (Vennem and Storey, 1987; Vennem et al., 1992; Webers et al., 1992; Curtis et al., 1999; Curtis and Lomas, 1999; Curtis, 2001; Webers and Spletstoesser, 2007, among others).

In the inboard side of the back-arc basin, at the Antarctic conjugate margin, the third eruptive stage is better constrained than Patagonia by radiometric dating between 510 and 500 Ma. The continental arc crust under extension due to slab retreat resulted in a pulse of rifting that triggered changes in magma source regions (Fig. 21 B, see also Section 7.6). The propagation events have transferred volcanic centers and sedimentary troughs from arc-proximal to more arc-distal positions. By c. 510 Ma the arc/back-arc magmatism ceased in Patagonia, and the locus of volcanic activity shifted to the Antarctic margin (Boger and Miller, 2004; Paulsen et al., 2007, 2008). For instance, the caldera complex of Taylor and Fairweather formations (Queen Maud Mts.) still register rift-related bimodal volcanic activity at c. 503–504 Ma (Encarnación et al., 1999) with the eruption of air-fall tuffs, tuff breccias and welded ignimbrites (Wareham et al., 2001), while coeval syn-rift sedimentation of the Fairweather Formation record maximum depositional ages of 509 + 8–9 and 504 ± 3 Ma (Paulsen et al., 2015). Additionally, silicic ash-flow tuffs, ignimbrites and agglomerates and lava flows of the Gambacorta Formation (Schmidt et al., 1964) dated at c. 501–500 Ma (Miller and Storey, 1995; Van Schmus et al., 1997) that erupted from a rift-related caldera complex (Curtis et al., 2004). Or else yet, the Patuxent Formation of the Neptune and Patuxent ranges is the lateral equivalent of Gambacorta Formation (Curtis and Storey, 2003), with a correlation based on the U-Pb dating of c. 500 Ma redeposited felsite blocks (Miller and Storey, 1995) and detrital zircons (Rowell et al., 2001; Goodge et al., 2004) and the presence of an extensive rift-related suite of coeval bimodal volcanic rocks (Rowell et al., 2001; Curtis and Storey, 2003).

Further West at the outboard Patagonian assemblage, the upper part of the tectonostratigraphic sequence of the Nahuel Niyeu and El Jagüelito formation has a maximum depositional age of c. 507 Ma (Rapalini et al., 2010) and c. 510 Ma (this contribution) in close analogy to the Taylor, Fairweather, Gambacorta, and Patuxent formations of the Antarctic conjugate margin (Fig. 21 B).

In summary, considering Patagonia and Antarctica as Early-to-Middle Cambrian conjugate margins, the outboard assemblage represented by forearc-to-backarc volcanic-sedimentary sequences of the Nahuel Niyeu and El Jagüelito formations has striking lithological and geochronological similarities to the inboard assemblage of the Ellsworth-Whitmore, Pensa-cola, and Queen Maud Mountains (Fig. 23). However, the volcano-pyroclastic rocks belong to different magmatic suites as it is shown below, due to its different geotectonic positions across conjugate margins.

7.5.2. Geochemical correlation

In Antarctica, the Early-to-Middle Cambrian synsedimentary volcanism suggests periodic extension within the overall convergent-margin system. A rift-related setting is recognized to volcanic rocks of the Liv Group in Queen Maud Mts. and the Heritage Group of the Ellsworth Mts. (Curtis et al., 1999; Wareham et al., 2001) whereas the Gambacorta Formation of the Pensacola Mts. was considered as part of the inboard assemblage of a magmatic arc (Storey et al., 1996). Thus, the most likely tectonic setting was an extensional rift environment within or behind an active volcanic arc (Wareham et al., 2001). All the above units fit well within a geodynamic scenario proposed here for Patagonia-Antarctica conjugate margins in which Antarctic rocks have occupied the inboard side of the extensional environment (Fig. 21). Following the alumina saturation indices ASI (Shand, 1927) and a Th-Co discrimination diagram for arc volcanism (Hastie et al., 2007), the c. 530 to c. 515 Ma volcanic rocks of the El Jagüelito Formation are plotted for geochemical comparison with synchronous 526 to 501 Ma, mesosilicic to acidic volcanic and pyroclastic rocks from Antarctica (Fig. 19). The dacites-to-rhyolites of the El Jagüelito Formation plot on the peraluminous trend defined by silicic volcanic rocks from Antarctica and overlap within the subalkaline series in Nb/Y-Zr/TiO2 diagram, all belonging to the same co-magmatic, high-K calc-alkaline/ shoshonitic magmas series (Fig. 19 A–C).

The consanguinity among coeval volcanic rocks along conjugate margins is also revealed by strong similarities in HFSE and REEs patterns and total element contents which are coherent and sub-parallel between each other. However, the Antarctic rocks are slightly enriched in total REE contents and have higher Nb-Sr-P-Zr-Hf contents (Fig. 19D, E) which are typical geochemical features of rift-related magmas (Eby, 1992).

Bimodality in the magmatic suite distribution is also a typical feature for rift-related magmatic rocks and are lacking in the Wyatt and Ackermann formations (Wareham et al., 2001), in close analogy to El Jagüelito Formation (Fig. 21 A). Therefore, their silicic magmas were erupted on the rift flanks and shoulders, in off-rift axis position, and are characterized by more potassic magmas with inherited subduction-related character derived from the lithospheric mantle (Gibson et al., 1993; Curtis et al., 1999; Wareham et al., 2001). The prominent mafic compositions of the Taylor, Fairweather, and Leverett
Fig. 23. Paleogeographic reconstruction of Gondwana for Cambrian times (adapted after Unrug, 1997, Boger and Miller, 2004, Meert and Liberman, 2008, and Flowerdew et al., 2007). Patagonia is adjacent to Pensacola and Queen Maud Mts. and also represents the southern extension of the Ellsworth-Whitmore Mts. Block in an outboard position with respect to main Early Cambrian Ross orogenic axis. Location of in situ archeocyathan faunas contained in several Cambrian limestone outcrops in East Antarctica (black dots) after Debenne and Kruse (1989), Cooper and Shergold (1991), Wood et al. (1992) and references therein: I. Heritage Range, Late Cambrian Minaret Formation; II. Argentine Range, Early Cambrian Schneider Hills Limestone; III. Neptune Range, Middle Cambrian Nelson Formation; IV. Patuxent Range, Middle Cambrian Nelson Formation; V. Nimrod Glacier, Early Cambrian Shackleton Limestone; VI. Holyoke Range, Early Cambrian Shackleton Limestone; VII. Byrd Glacier, Early Cambrian Shackleton Limestone; VIII. Flinders Ranges, Australia. Location of Cambrian rocks in Patagonia (red circles): NP, Northern Patagonia: 1. El Jagüelito Fm (533–510 Ma), 2. Mina Gonzalito Complex (540–525 Ma), 3. Nahuel Niyeu Fm (516–507 Ma), 4. Colobihuincul Complex (505 Ma), SP, Southern Patagonia: 5. Rio Deseado Complex, 6. The underground basement of Magellan basin. Antarctic localities cited in the text (numbers in white circles): 1. Haag Nunatak Gneiss (1176 Ma), 2. Sotoy Peak rhyolite (505 Ma), Heritage Gr., Fraser Ridge Fm (518 ± 18 Ma), Heritage Gr., Springer Peak & Liberty Hills Fms (~525 Ma), Crashtie Gr., Mount Twist Fm (~499 ± 6 Ma), 3. Mount Woolard (~505 Ma), 4. Whitmore Mts. (~516 ± 7 Ma), 5. Stewart Hills (~616 ± 12 Ma), Thiel Mts. (502 Ma), 6. Pensacola Mts., Gambacorta Fm (501 Ma), Patuxent Fm (~513 ± 4 Ma), 7. Queen Maud Mts., Liv Group: Leverett Fm (519–515 Ma), Fairweather Fm (509–504 Ma), Taylor Fm (516–505 Ma), Ackermann Fm (524 Ma), Wyatt Fm (526 Ma), M. Malvinas/Falkland Islands; MP: Malvinas Plateau; DML: Dronning Maud Land; EWM: Ellsworth-Whitmore Mountains; FB: Flichkeit Block; TAM: Transantarctic Mountains; TT: Takaka Terrane. References for Antarctic localities as in text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

formations of the same Liv Group (Wareham et al., 2001) were emplaced in a more central position near the rift axis, between the back-arc El Jagüelito trough and half-grabens of the Wyatt and Ackermann formations (Fig. 21 B). Peraluminous, high-K calc-alkaline/back-arc El Jagüelito trough and half-grabens of the Wyatt and Ackermann formations are interpreted to be partial melts of continental crust that may be as old as 1.5 Ga (Wareham et al., 2001). Nevertheless, the most depleted basalts of the Taylor, Fairweather, and Leverett formations are interpreted as melts of asthenospheric mantle that were variably enriched in light REE and LILE by melts from the lithospheric mantle and/or continental crust, whereas the rhyolites are interpreted as mixtures of a fractionated mafic magma and partial crustal melts (Wareham et al., 2001).

In summary, the felsic rocks of the El Jagüelito Formation and the Liv Group, i.e., along conjugate margins, were probably generated in response to the underplated mafic magmatism that produced partial melting of crustal rocks in an extensional environment within the overall convergent-margin system.

7.5.3. Hf isotopes as a petrologic tracer of magma sources

Fig. 18 depicts Hf isotope composition of the dated zircons from conglomerate SG09-61 that further provide information of magmatic sources and allow proposing a Grenvillian-age Late Mesoproterozoic input to magma generation in the parental source area. The solid red arrow represents the Hf evolution through time (after Flowerdew et al., 2007) for the c. 1176 Ma Haag Nunatkats gneiss (Millar and Pankhurst, 1987) from northeast of the Ellsworth Mts.

εHf positive values that correspond to depleted juvenile mantle model ages of around 1.5 Ga from the late Mesoproterozoic zircon population predominately plot scattered around the evolution trend of the Haag Nunatkats gneiss and match those in volcano-sedimentary rocks of similar age from the Ellsworth-Whitmore block (Fig. 18 A–C), may suggesting sources that recycle sedimentary and volcanic derivatives from the Ellsworth-Whitmore block are more likely. There is one exception; a grain with a negative εHf value and model age > 1.5 Ga plot within the evolution trend of Central Transantarctic Mountains detrital zircons which were derived from Laurentian A-type granites (Goode et al., 2008), and thus minor provenance from central TAM basement is also likely.

The majority of the Cambrian detrital zircons have εHf values that fall along the evolution trend of the Haag Nunatak gneisses, indicating that magma from which they crystalized was derived from partial melting of Mesoproterozoic “Grenvillian age” crust similar to that gneiss (Fig. 18 A). Considering age and Hf data as a whole, a source region that satisfies the juvenile nature of the late Mesoproterozoic grains and can provide Cambrian grains generated by remelting late Mesoproterozoic juvenile crust is the Ellsworth-Whitmore Mts. block (Fig. 23). In addition, TDM range of ages match those in the Haag Nunatkats gneiss and sedimentary and volcanic rocks of similar age in the Ellsworth-Whitmore Mts. block, and the Hf isotope signature from Tardugno
Granodiorite suggests derivation by mixing of juvenile mantle-derived and crustally recycled components of similar composition to that exposed in the Haag Nunataks gneisses (Fig. 18 B).

The Hf isotope composition of inherited grains and igneous zircons formed during crystallization of the Tardugno Granodiorite (Pankhurst et al., 2014) match the Hf signature of the detrital igneous zircons from volcanogenic conglomerate SG09-61 (Fig. 18 A, C), showing that a common magma was derived from pre-existing crustal material in the source region of Patagonia. εHf concentrated at c. −3.2 confirms this and HF depleted mantle model ages at c. 1.6 Ga (Pankhurst et al., 2014) which validate the presence of continuously recycled older crustal material in the source region of the Tardugno Granodiorite that could be provided by Mesoproterozoic Haag Nunataks gneiss, likewise as that of the El Jagüelito conglomerate SG09-61.

These tracers indicate the presence of unexposed continental crust in Patagonia having the same age and isotopic signatures as the distinctive Haag Nunataks gneiss in Antarctica. Yet, HFDM model ages with a major age cluster between 1.51 and 1.73 Ga indicate separation from continuously recycled older crustal material in the source region by partial melting (Fig. 18 B), which agrees with major 1.4–1.7 Ga age range of the Sm-Nd (Pankhurst et al., 2006, 2014; Martínez Dopico et al., 2011; Chernicoff et al., 2013) and Re-Os (Mundl et al., 2016; Schilling et al., 2017) crust-derived depleted mantle model ages.

In summary, the Hf isotope composition of zircon grains of the El Jagüelito Formation and Tardugno Granodiorite suggest derivation by mixing of juvenile mantle-derived and crustally recycled components of the similar composition to that exposed in Antarctica. It also indicates the presence of similar Mesoproterozoic to Paleoproterozoic sources along conjugate margins that isotopically support a Patagonia-East Antarctic fit.

7.5.4. Overall similarities of the Archeocyath fauna

The outcrop of the source area of the Attdabanian-Botomian Archeocyathid limestone blocks of the El Jagüelito Formation is rather puzzling and remains unknown in Patagonia. Since water-transport rapidly rounds large clasts, outcised and angular-shaped blocks normally indicate minimal transport (Haughton et al., 1991). However, considering that in situ archeocyathic limestones have not been reported either in the El Jagüelito Formation and surrounding Patagonian units nor the regions immediately North of Patagonia or even the entire continental South America, a local, proximal source area for outcised calcareous blocks is unlikely (Figs. 20, 21 A). Thus, the most likely provenance area should be a parautochthonous source but in East Antarctica (e.g., González et al., 2010, 2011a; Naipauer et al., 2010). For instance, Archeocyathid limestones are found in situ in the inboard Shackleton, Schneider Hills, and Leverett limestones, Nelson Limestone, and Minaret Formation, respectively of Early, Middle and Late Cambrian age of Antarctica (Debrenne and Kruse, 1989; Cooper and Shergold, 1991; Wood et al., 1992; Rowell et al., 1997). Similar archeocyathid limestones occur as erratic blocks in upper Paleozoic tillites and more recent moraines in neighboring regions of West Gondwana, such as the Antarctic Peninsula, the Ellsworth Mts., South Africa, the Malvins (Falkland) Islands and the newly found location of Sierra de la Ventana in Argentina (González et al., 2012). The Transantarctic Mts., and particularly the Shackleton Limestone, are suggested to be the most likely source area for most of these blocks (Debrenne and Kruse, 1989; Stone and Thomson, 2005; Stone et al., 2012, and references therein).

The specimens described from the El Jagüelito Formation show additional close relationships with the Early Cambrian assemblages reported from the Antarctic Peninsula, the Malvins (Falkland) Islands and the Whichaway Nunataks, and afterward their fossiliferous limestone clasts could have derived directly from the same Shackleton Limestone of the Central Transantarctic Mts. (González et al., 2011a). Alternatively, a potential source area should be an Archeocyathid limestone within the Leverett Formation in the Bender Mts. of the outboard Queen Maud terrane (Paulsen et al., 2015), which Attdabanian-Botomian Archeocyathids is akin to that of the inboard Shackleton Limestone (Rowell et al., 1997).

Concerning the above overall similarities of the fossiliferous limestone blocks, a special correlation can be established between the c. 510 Ma conglomerate AB-282 level of the El Jagüelito Formation and the c. 506 Ma Douglas Conglomerate/Starshot Formation of the Byrd Group in the Transantarctic Mts. (Goodge et al., 2004), all of which contain coeval archeocyathid limestone clasts of the underlying Shackleton Limestone (Myrow et al., 2002), and Ross magmatic clasts and sharing similar detrital zircon patterns (Naipauer et al., 2010; González et al., 2010, 2011a). Or else, further equivalence in the c. 509 Ma maximum depositional age of the schist with quartizitic pebbles from Fairweather Formation (Paulsen et al., 2015) and even the Conglomerate Ridge Formation with granite clasts dated at 532 ± 5 and 525 ± 2 Ma (Rees et al., 1995), all interpreted as the sedimentary response to uplift and erosion in the source region.

In summary, Archeocyathids are strong provenance markers, and thus, Early Cambrian fossiliferous blocks from the El Jagüelito Formation were probably transferred from inboard Antarctic margin to outboard Patagonian magmatic arc/back-arc system (Fig. 21 A, B).

7.6. Paleogeographic implications

Based on all previous results and interpretations, a paleogeographic reconstruction between Patagonia and Antarctica conjugate margins is assessed along a series of geodynamic stages, shown below.

7.6.1. Early Cambrian (530–515 Ma) synsedimentary volcanism

By the Early Cambrian time, the onset of active subduction occurs along the paleo-Pacific continental margin of Antarctica (Urug. 1997; Curtis et al., 1999; Goodge et al., 2004; Estrada et al., 2016). As result of the backward movement of the subduction zone relative to the motion of the Antarctic plate which was being subducted, the overriding plate was stretched, and a back-arc basin was formed towards the continent whereas a volcanic arc was implanted oceanward (Fig. 21 A; see also Huber-Grünberg, 1990). In this geodynamic scenario, the eastern North Patagonian basement can be placed outboard of the continental margin represented by the Pensacola–Queen Maud Mts., and southward of the Ellsworth-Whitmore Mts. block (Fig. 23, see also the paleogeographic position of Patagonia in the Gondwana configuration at c. 500 Ma, Fig. 15.1 of Schmidt et al., 2018). In connection with periodic extension within the overall convergent-extensional margin system, the successive periods of Cambrian synsedimentary volcanic activity developed, i.e., c. 530 Ma first- and c. 515 Ma second eruptive stages.

7.6.2. Mid-Cambrian (510–500 Ma) rift-related volcanism

The extensional back-arc basin subsequently became in a rift-related basin due to progressive subduction of the negatively buoyant oceanic lithosphere and backarc opening via rollback of the forearc block. The arc/back-arc magmatism ceased in Patagonia, and the locus of syn-rift volcanic activity shifted to the Antarctic margin (Boger and Miller, 2004; Paulsen et al., 2007, 2008) in which volcanic eruptions of the third eruptive stage took place (Fig. 21 B). The onset of rifting in Patagonia produced block tilting, footwall uplift of volcanic complexes above base level and erosion by high-angle normal faults, one that affected the 529 Ma Leon eruputive center (Fig. 8). Synchronously but westward in arc-distal positions, new troughs were developed, and protoliths of either the high-grade Colohuincul Complex was deposited (Figs. 21 B, 23) c. 505 Ma (Serra Varela et al., 2016) and the low-grade Col Niyeu Formation started its deposition younger than 532 Ma (Martínez Dopico et al., 2017).

By 505 ± 5 Ma (Curtis et al., 2004), the accretion of the outboard Queen Maud suspect terrane with the Antarctic margin of Gondwana caused the orogenic Ross contraction event along the Transantarctic Mts. and Ellsworth Mts. (Rowell and Rees, 1989; Rowell et al., 1992;
Curtis and Storey, 2003; Curtis et al., 2004; Goode et al., 2004; Paulsen et al., 2013, 2015; among others).

Broadly synchronous, a back-arc basin inversion concomitant to a pulse of the trench and slab roll-back produced changes in the geodynamic and paleogeography of both, the outboard Patagonian and the inboard Antarctic assemblages. Along Transantarctic Mts., the main Ross tectonic event was responsible for the folding and uplift of the Early-to-Middle Cambrian sedimentary successions (Rowell et al., 1992; Curtis and Storey, 2003; Goode et al., 2004; Curtis et al., 2004). Large volumes of molassic sediments were shed to marginal Mid-Cambrian to Ordovician Antarctic basins, by erosion of Pan African, Grenville, and cratonic sources, and also of volcanic rocks sourced from Ross magmatic arc (Goode et al., 2004, 2012; Flowerdew et al., 2007; Goode et al., 2012; Paulsen et al., 2015, 2016; Estrada et al., 2016; Craddock et al., 2017).

In the outboard northern Patagonia basement, the onset of supracrustal deformation related to the inboard main Ross orogenic event is registered as the sedimentary response to uplift and erosion in the East Antarctic source region. Syn-orogenic deposition of the conglomerate layer AB–282 has provided stratigraphic evidence for the presence of at least localized erosion and possible angular unconformity at some localities, thus indicating tectonically induced denudation in a convergent-margin setting of Gondwana. Thus, Patagonia received archeocyathan limestone and Ross magmatic clasts to contribute to the conglomerate layer AB–282 (Fig. 21 B).

As a result, the accretion of the outboard Queen Maud suspect terrane within the overall convergent-extensional Antarctic margin system (Paulsen et al., 2013, 2015) could have triggered detachment of the outboard assemblage of Patagonia concomitantly, correspondingly to the tectonic instability and transensional regimes associated with rifting and the oblique-to-normal convergence and rapid plate motion that characterized the entire proto-Pacific region at that time (Encarnación and Grunow, 1996; Boger and Miller, 2004; Cawood, 2005; Paulsen et al., 2008, among others). Thus, Patagonia could have detached from Antarctica shortly after c. 505 Ma.

7.6.4. Early Ordovician post-orogenic Punta Sierra Plutonic Complex: post-collisional magmatism

By the Early Ordovician, post-collisional magmatism was implanted on Patagonian margin since, at least, 477 Ma, which is the oldest crystallization age to Punta Sierra Plutonic Complex. Undeformed, post-orogenic granitoids intruded in a range of 477–462 Ma (Varela et al., 1998, 2008; Pankhurst et al., 2006) the already deformed and metamorphosed basement rocks (Figs. 20, 21 C).

In the Antarctic counterpart, at Transantarctic Mts., widespread Ross arc plutonism, i.e., Granite Harbor Intrusive Complex (Gunn and Warren, 1962) and the Queen Maud batholith (McGregor, 1965; Murtaugh, 1969; Borg et al., 1990; Stump, 1995) started as early as c. 590 Ma (Goode et al., 2012). Ages cluster around 500 Ma representing a peak syn-orogenic magmatic pulse whereas younger ages until 480 Ma are related to post-orogenic magmatism (e.g., Encarnación and Grunow, 1996; Grunow and Encarnación, 2000; Allibone and Wysoczanski, 2002 and references therein).

The onset of post-orogenic magmatic activity of the Punta Sierra Plutonic Complex is the roughly coincident overlapping culmination of that correlated to Granite Harbor Intrusive Complex, and thus post-orogenic magmatism is diachronous along Patagonia and Antarctica conjugate margins.

8. Concluding remarks

Spatial and temporal distribution of K-bentonites beds from northern Patagonia reveal that they can be good marker horizons for lithologic, geochemical and geochronological comparison, and for regional stratigraphic correlations along Early Paleozoic continental magmatic provinces of the paleo-Pacific margin of Gondwana (i.e., between Patagonia and Antarctica conjugate margins).

The El Jagüelito and Nahuel Niyeu formations, and also the Mina Gonzalito Complex, are part of a same outboard volcano-sedimentary assemblage which was rifted-off south of the corridor Ellsworth–Whitmore Mts.–Pensacola and Queen Maud Mts. sector of the paleo-Pacific margin of East Gondwana during main Ross orogenic event (Fig. 23). Equivalent rocks to the Mesoproterozoic Haag Nunatak gneiss may continue southward of the Ellsworth–Whitmore block, as the underground Grenville-age continental crust of northern Patagonia. We envisage the outboard supracrustal Cambrian assemblage of the eastern North Patagonian Massif as the volcanic-sedimentary cover of the underground “Grenvillian-age” basement rocks.

Finally, the “Patagonia terrane” is considered as not an exotic terrane originally defined by Ramos (1984) which comprises northern and southern Patagonia blocks, but as parautochthonous “suspect terrane” composed of tectonostratigraphic crustal fragments derived from a magmatic arc/back-arc system. Cambrian rifting and detachment of the southern Patagonia block, i.e., Deseado Massif and underground basement of Magellan basin, from Antarctica (Pankhurst et al., 2006; Ramos and Naipauer, 2014) should have occurred synchronously, and subsequently it should have collided with the northern Patagonia block in the Late Paleozoic (e.g., Pankhurst et al., 2006). The parautochthonous northern Patagonia suspect terrane was part of a collage of accreted terranes that arrived along the paleo-Pacific margin of Gondwana in South America during the Early Paleozoic (e.g., Schmitt et al., 2018).

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gr.2018.05.015.
Acknowledgments

We would like to express our sincere thanks to people from Sierra Grande area (J.C. Baccadone, R. Leon, Musi and Gonzalez and their families) all over the wide eastern part of Rio Negro province, for allowing us the access to their farms and for their hospitality during our fieldwork. We also thank G. Greco, H. Campos, V. Garcia and S. Gonzalez for helping field mapping. We are obliged to fruitful discussions and assistance maintained with Dr. Marcos Comerio (UBA–CONICET). We warmly acknowledge the reviews by W. Huff and V.A. Ramos, which improved the original manuscript greatly. This contribution was supported by grants PI-UNRN-40-A-462 Universidad Nacional de Rio Negro and PICT-2015-0787 Ministerio de Ciencia, Tecnología e Innovación Productiva, ANPCYT (FONCYT).

References

