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ABSTRACT
In glacial studies, properties such as glacier thickness and the basement permeability
and porosity are key to understand the hydrological and mechanical behaviour of
the system. The seismoelectric method could potentially be used to determine key
properties of glacial environments. Here we analytically model the generation of seis-
mic and seismoelectric signals by means of a shear horizontal seismic wave source
on top of a glacier overlying a porous basement. Considering a one-dimensional
setting, we compute the seismic waves and the electrokinetically induced electric
field. We then analyse the sensitivity of the seismic and electromagnetic data to rele-
vant model parameters, namely depth of the glacier bottom, porosity, permeability,
shear modulus and saturating water salinity of the glacier basement. Moreover, we
study the possibility of inferring these key parameters from a set of very low noise
synthetic data, adopting a Bayesian framework to pay particular attention to the
uncertainty of the model parameters mentioned above. We tackle the resolution of
the probabilistic inverse problem with two strategies: (1) we compute the marginal
posterior distributions of each model parameter solving multidimensional integrals
numerically and (2) we use a Markov chain Monte Carlo algorithm to retrieve a
collection of model parameters that follows the posterior probability density func-
tion of the model parameters, given the synthetic data set. Both methodologies are
able to obtain the marginal distributions of the parameters and estimate their mean
and standard deviation. The Markov chain Monte Carlo algorithm performs better
in terms of numerical stability and number of iterations needed to characterize the
distributions. The inversion of seismic data alone is not able to constrain the values of
porosity and permeability further than the prior distribution. In turn, the inversion of
the electric data alone, and the joint inversion of seismic and electric data are useful
to constrain these parameters as well as other glacial system properties. Furthermore,
the joint inversion reduces the uncertainty of the model parameters estimates and
provides more accurate results.
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1 INTRODUCTION

Seismoelectromagnetics aims at combining the well-
established seismic method with the sensitivity of
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electromagnetic methods to fluid content in porous rocks to
study the subsurface. Seismoelectric and electroseismic sig-
nals originate from the electrokinetic coupling phenomenon
(Overbeek 1952; Jouniaux and Zyserman 2016). The seis-
moelectric method uses a seismic source to induce a relative
motion between the fluid and the rock matrix. This relative
motion results in an equivalent current density, which leads
to an electromagnetic field accompanying the seismic wave
propagation. Seismoelectric signals with non-negligible am-
plitudes can also arise at interfaces of media with different
electrokinetic or seismic properties (Haartsen and Pride 1997;
Garambois and Dietrich 2002). At such interfaces, the electric
current density is unbalanced, inducing an electric dipole and
thus an electric field propagating at the speed of the light in
the medium, which may be detected at the surface (Pride and
Garambois 2005; Haines and Pride 2006). Recent theoretical
works predict the existence of seismoelectric conversions due
to heterogeneities and meso-scale fractures in porous media
(Jougnot et al. 2013; Monachesi et al. 2015). The seismoelec-
tric method can be performed using either a natural source
(earthquakes) or an active seismic source. Very recent works
illustrate the potential of both types of sources. Dzieran et al.

(2019) studied the influence of the interface response (IR)
on seismoelectric signals arising from earthquake sources. By
introducing the seismoelectric spectral ratio (SESR), they anal-
ysed field and synthetic data leaving behind the source signa-
ture and showed that the SESR depends on the frequency due
to the presence of the IR. Moreover, this dependence is related
to the hydrogeological setting through the variation of param-
eters such as porosity and salinity. Butler, Kulessa and Pugin
(2018) performed a field study using explosive and vibroseis
sources in clayey sediments and observed quasi-coseismic seis-
moelectric arrivals, characterized as evanescent electromag-
netic waves (Ren, Huang and Chen 2016, 2018), generated
by the arrival of reflected P and S waves at the top of a shal-
low layer of elevated porosity and electrical conductivity. The
performance of such study in a region with known geological
structure allows to broaden the amount of information able
to be extracted from seismoelectric signals.

Other recent works in the lively research realm of seis-
moelectrics comprise results in theory (Jardani and Revil
2015; Grobbe and Slob 2016; Munch and Zyserman 2016;
Fiorentino, Toussaint and Jouniaux 2017; Gao, Huang and
Hu 2017a,b; Zyserman, Monachesi and Jouniaux 2017a,b;
Dietrich et al. 2018; Guan, Shi and Hu 2018; Monachesi, Zy-
serman and Jouniaux 2018a; Gao et al. 2019) as well as from
laboratory tests (Bordes et al. 2015; Hu, Wang and Guan
2015; Holzhauer et al. 2017; Peng et al. 2017; Devi et al.

2018). A detailed account of results on most topics of interest
in seismoelectrics can be found in the review of Jouniaux and
Zyserman (2016) and in the book by Revil et al. (2015).

Characterizing glacier system properties has been a
matter of interest in the field of electric and electromag-
netic prospecting methods throughout the last two decades.
Glaciers are fragile systems highly responsive to climate vari-
ations. Studying physical properties of glaciers and their evo-
lution in time can help to better understand the global hy-
drological balance and the variations in the sea level resulting
from glacier mass changes. In this context, the seismoelectric
method appears as a potential utility in glacial studies. Be-
cause the method is sensitive to mechanical and electromag-
netic properties, it may allow an in-depth characterization
of glacier environments in terms of structure and temporal
evolution of the system. Regarding seismoelectric studies on
glaciers, Kulessa, Murray and Rippin (2006) recorded seis-
moelectric signals on Glacier de Tsanfleuron, Switzerland,
using a single channel vertical sounding geometry. They in-
ferred the electromagnetic waves to be generated by elec-
trokinetic conversion of seismic waves within the snow pack
and near the dry-wet ice and ice-bed interfaces. In laboratory
tests, Liu et al. (2008) showed that an electric double layer
is formed at the boundary between permafrost and unfrozen
soil, and observed seismoelectric conversions originated there
due to the electric and mechanical contrasts between both
media. On the other hand, Zyserman, Gauzellino and Santos
(2012) predicted electroseismic conversions at the same inter-
face in a numerical study of methane-hydrate reservoirs. Later,
Mahardika (2013) was able to produce numerical synthetic
data compatible with the field recordings collected by Kulessa
et al. (2006), treating the snow-glacial environment in a simi-
lar way as he did with the vadose zone-aquifer zone in an un-
saturated porous medium (Revil and Mahardika 2013). Quite
recently, Siegert et al. (2018) interpreted, from seismoelectric
soundings of the West Greenland Ice Sheet, arrival times from
the till layer beneath the ice-sheet base fully compatible with
previous data obtained with seismic amplitude variation with
offset surveys. Although convincing multi-channel measure-
ments have yet to be acquired on ice, the aforementioned pub-
lications encourage the study of glacier systems using seismo-
electrics. A recent theoretical study by Monachesi, Zyserman
and Jouniaux (2018b) showed that the electromagnetic inter-
face response originating at the interface between the glacier
bottom and the basement is proportional to the electric cur-
rent density at this depth, and depends on textural and electri-
cal properties that could be of interest to characterize glaciar
systems. This study, however, did not address whether these
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parameters may be recovered in a seismoelectric acquisition
scenario, and with which degree of uncertainty.

In subsurface geophysics, the determination of key pa-
rameters of the system under study is done through the resolu-
tion of an inverse problem (Mosegaard and Tarantola 2002).
The data inversion is tackled using either a deterministic or a
probabilistic (also known as Bayesian) approach. Determinis-
tic inversion searches for a single, optimal set of model param-
eters, whereas probabilistic inversion aims at characterizing a
full probability density function (pdf) of these parameters.
The latter provides a more complete information on the mod-
els that are more likely to explain our data set (Tarantola
and Valette 1982). Geophysical phenomena can be described
in terms of a joint probability distribution of a large set of
variables, but if we are interested in the behaviour of a spe-
cific variable, we turn to marginal distributions. They can be
obtained by integration or sampling of the pdf of the model
parameters given a certain data set – the posterior pdf (see
Section 5 for a thorough insight).

The existing literature on inversion of seismoelectric data
is not, to our knowledge, very broad. Concerning determinis-
tic studies, it is worth to mention the works of Guan, Hu and
Wang (2013), Chen and Yang (2013) and Bonnetier, Triki and
Xue (2019), which deal with an electrolyte-saturated homo-
geneous poroelastic medium. Guan et al. (2013) successfully
determined the permeability of different fluid saturated ho-
mogeneous porous formations from seismoelectric well logs,
deriving the amplitude ratio of electric signal to acoustic pres-
sure of Stoneley waves, and obtaining the permeability from
an expression involving the tangent of its phase. They deter-
mined the conditions under which the electric conductivity
and the electrokinetic coupling coefficient can be recovered
from a two-step inversion. On the other hand, Chen and Yang
(2013) and Bonnetier et al. (2019) carried out a stability anal-
ysis of the inverse problem for the possible recovery of the
same two parameters from knowledge of the seismoelectric
fields. Concerning the probabilistic approach, Jardani et al.

(2010) performed a stochastic joint inversion procedure of
synthetic seismic and seismoelectric data using an Adaptive
Metropolis algorithm. They modelled the seismoelectric re-
sponse over a two-dimensional stratified medium hosting a
reservoir partially saturated with oil employing a finite ele-
ment algorithm. They were able to retrieve information about
the different geological units of the model, comprising per-
meability, porosity, electrical conductivity, bulk modulus of
the dry porous frame, bulk modulus of the pore fluid, bulk
modulus of the solid phase and shear modulus of the for-
mations. They were able to recover the permeability within

one order of magnitude, electrical conductivity and other ma-
terial properties, with the exception of the porosity, which
was not well constrained by the inversion. Although the ob-
tained distributions are mostly centred around the true values,
they show large dispersion, even in logarithmic scale. More
recently, Mahardika, Revil and Jardani (2012); Mahardika
(2013), employing a similar approach, performed an inversion
of synthetic data corresponding to the occurrence of a frack-
ing event in a two-layered system. The authors concluded that
when using noiseless data, its electric portion contains more
information than the seismic one, and that the model param-
eters obtained via joint inversion are more accurate than the
ones obtained by inverting the seismic time-series alone.

In the present paper, we propose a Bayesian framework
to analyse the information that can be recovered about rele-
vant model parameters of a glacial environment. On the one
hand, we calculate the marginal distribution of each model
parameter computing multidimensional integrals. We numer-
ically compute the latter by means of the Cuba library (Hahn
2005), which offers a variety of Monte Carlo and determin-
istic methods. On the other hand, we solve the probabilistic
inverse problem using a Markov chain Monte Carlo algorithm
(MCMC): the DiffeRential Evolution Adaptive Metropolis
(DREAM) (Vrugt et al. 2009). This is a highly optimized
algorithm that combines the capability of MCMC methods
of ensuring convergence to the target distribution (Taran-
tola 2005) with features of Differential Evolution algorithms
(Sambridge and Drijkoningen 1992; Sen and Stoffa 1992)
which allows a proper scale and orientation of the proposal
distribution employed to sample the posterior pdf. This ap-
proach results in a collection of model parameters that follow
the posterior pdf. Histograms of the marginal distributions
and the uncertainty estimates can be computed from such
collection.

The resolution of the inverse problem requires the com-
putation of the forward model, which in our case permits to
simulate the seismic and seismoelectric data. Specifically, we
simulate full waveform primary and multiple reflections and
interfacial effects from the base of the ice. We calculate them
following the analytic expressions for the electric field and
seismic waves obtained by Monachesi et al. (2018b), assum-
ing a one-dimensional geometry. The seismoelectric theoreti-
cal framework used in the forward modelling is the one pre-
sented by Pride (1994), broadly used in seismoelectric studies
(Garambois and Dietrich 2002; Hu, Guan and Harris 2007;
Haines, Guitton and Biondi 2007a,b; Hu and Gao 2011;
Warden et al. 2012; Zyserman et al. 2012; Guan et al. 2013;
Warden et al. 2013; Kröger, Yaramanci and Kemna 2014;
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Bordes et al. 2015; Zyserman et al. 2015; Gao, Huang and
Hu 2017a; Zyserman et al. 2017a; Guan et al. 2018). The
solutions we employ were derived under a set of assumptions,
such as the consideration of the glacier as an elastic uniform
medium (no liquid content), uniform properties through the
entire ice sheet and the basement and a planar shear wave
source applied over the entire ice surface at once. The use of an
shear horizontal (SH) source permits a higher signal-to-noise
ratio (SNR) than when using compressional sources (Zyser-
man et al. 2017a). This source has been lately successfully
used in several shallow subsurface studies, both theoretical
seismoelectric ones and seismic field works (see Monachesi
et al. 2018b and references therein). In addition, Polom et al.

(2014) were able to identify the depth of a glacier basement,
and structures below, by inverting both P- and SH-wave data.
They remarked that unexpectedly they were able to retrieve
information from the S-wave in the studied environment.

The synthetic data are generated adding a noise term to
the seismic and seismoelectric noiseless data. The former is
generated following noise generation standards for seismic
and electromagnetic data, respectively. That is, for the seismic
signal, the noise term is constant and dependent of the SNR
(Robinson and Treitel 2000), whereas for the electric field
signal, the noise term is proportional to the noiseless signal
amplitude (Chen et al. 2007; Kalscheuer et al. 2010; Rosas-
Carbajal et al. 2014).

The reminder of this paper is structured as follows:
Section 2 comprises the formulation of the equations for the
seismoelectric problem in a glacial environment. Section 3
details the model parameters we are interested in studying,
and Section 4 explains how the synthetic data are computed.
Section 5 presents the principles of Bayesian inference applied
to our problem, and the methodology used to compute the
posterior marginal probabilities and the full posterior pdf dis-
tribution using an MCMC scheme. In Section 6, we present the
main results in terms of a sensitivity analysis and the Bayesian
inference with the aforementioned techniques. Finally,
Section 7 discusses the results and their contribution to the
study of glacier environments, and Section 8 outlines the main
findings and conclusions.

2 FORWARD MODE L

Following Monachesi et al. (2018b), we assume a one-
dimensional medium constituted by a single layer on top of
a half-space in contact at a given depth denoted by zb (see
Fig. 1). The top layer represents the ice body of the glacier,
and is assumed to be an elastic medium, whereas the half-

Figure 1 Schematic representation of the one-dimensional system
considered in this study. The ice body is assumed to be an elastic
medium, whereas the porous basement is treated as a poroelastic
medium.

space represents the glacier basement, which we assume to
be a porous medium fully saturated with water. The seismic
source of the system, located at the glacier surface, is a shear-
ing force, parallel to the x-axis acting on a horizontal infinite
plane. Under these assumptions, the source can only induce
displacements in the x-direction, with amplitudes depending
only on depth.

The mechanical equation that governs the wave propaga-
tion in the glacier, written in the space-frequency domain, as-
suming an eiωt time dependence, is given by (Aki and Richards
2002):

−ω2ρiceux − Gice
∂2ux

∂z2
= F s(ω)δ(z), (1)

where ω is the angular frequency, ρice and Gice stand for the
mass density and the shear modulus of the ice composing
the glacier and ux is the displacement. The right-hand side
of equation (1) represents the shearing source acting on the
surface (z = 0), F s(ω) is the shearing force per unit area and
δ(z) is the Dirac delta function.

In order to model the seismoelectric response, we assume
that the net electric charge in the whole domain is zero and the
magnetic permeability is the one of the vacuum. With these
assumptions, the electric and magnetic fields in the glacier will
satisfy the following simplified form of Maxwell’s equations:

− σice Ex − ∂ Hy

∂z
= 0, (2)

∂Ex

∂z
+ iωμ0 Hy = 0, (3)

where Ex and Hy are the electric and magnetic fields, re-
spectively, σice is the electric conductivity of the glacier and
μ0 = 4π × 10−7 N A−2 is the vacuum magnetic permeabil-
ity. Note that the displacement currents are not accounted for
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in equations (2) and (3); this is the common assumption for
shallow seismoelectric surveys (Hu and Liu 2002; Haines and
Pride 2006; Bordes et al. 2015; Gao, Huang and Hu 2017a;
Guan et al. 2018). This form of Maxwell’s equations is com-
monly known as magneto quasi-static approximation. It has
been analysed within the frame of seismoelectrics in the last
two mentioned references, and previously by other authors
(Løseth et al. 2006; Rapetti and Rousseaux 2014) in more
general contexts.

To model the seismoelectric response in the basement,
we use the equations derived by Pride (1994). If the elec-
troosmotic feedback is neglected in Biot’s equations, as it
is usually assumed for frequencies that vary from 10 Hz to
1 kHz, range of interest for shallow seismoelectric surveys
(tens to hundreds of meters) (Hu and Liu 2002; Haines and
Pride 2006; Warden et al. 2013; Bordes et al. 2015; Gao,
Huang and Hu 2017a; Guan et al. 2018), Pride’s equations
can be written as follows:

−ω2ρbus,x − ω2ρwu f,x − Gb
∂2us,x

∂z2
= 0, (4)

−ω2ρwus,x − ω2g0u f,x + iω
ηw

κ
u f,x = 0, (5)

−σb Ex − ∂ Hy

∂z
= iω

ηw

κ
L0u f,x = jv, (6)

∂Ex

∂z
+ iωμ0 Hy = 0. (7)

In these equations, us,x and u f,x are the average solid and
relative fluid displacements, respectively, ρb is the bulk mass
density, which can be computed as ρb = ρs(1 − φ) + φρw, be-
ing ρs the mass density of the solid grains constituting the
basement porous matrix, ρw the mass density of water and
φ the porosity of the medium. Gb is the basement rock ma-
trix shear modulus, g0 the Biot’s low frequency inertial cou-
pling coefficient, computed as g0 = Fρw (Santos et al. 2004,
2005; Zyserman et al. 2012), where F is the formation fac-
tor given by F = φ−m̂, being m̂ the cementation exponent, ηw

is the water viscosity and κ the permeability of the porous
rock matrix. The right-hand side in equation (6) is the elec-
tric current density, source of the electromagnetic signals, and
can be referred to as the viscous current density jv, whereas
σb Ex is the conduction current, σb being the electric conduc-
tivity of the basement. The coefficient L0 is the electrokinetic
coupling (Pride 1994); it creates, in this model, the coupling
between the seismic wave and the electric and magnetic fields.
If this coupling is zero, there are no seismo-electromagnetic
conversions. Within the seismic frequency band, it can be

written as (Pride 1994; Warden et al. 2013; Bordes et al.

2015):

L0 = − εwζ

ηw F

(
1 − 2

d


)
, (8)

where ζ is the zeta potential and εw is the permittivity of water,
d the Debye length and  a geometrical parameter, related to
the matrix pore structure.

In order to solve the problem stated by equations (1)–(7),
it is necessary to establish boundary conditions for the dis-
placements and the electromagnetic fields, both in the bound-
aries of the system (z = 0 and z → ∞) and at the interface be-
tween both media (z = zb). Once the boundary conditions are
stated, the problem can be analytically solved taking advan-
tage of the decoupling of the mechanical and electromagnetic
equations; we first solve the mechanical problem and, then, the
obtained solution is used to derive the final solutions for the
electric and magnetic fields. Their final expressions are given
in the Appendix; the full derivation is detailed in Monachesi
et al. (2018b).

3 M ODEL PARAMETERS

We first present the subsurface model parameters that we
are interested in characterizing and those we assume to be
known in advance. Then we describe the rock physics models
published in the literature which we use to relate our un-
known model parameters to others needed to solve the for-
ward problem. In the previous section, we established that
both the glacier and the basement are homogeneous. As in a
geophysical survey we have direct access to the ice, we con-
sider known – and constant – all its relevant parameters (see
values in Table 1). The ice shear modulus is computed as
Gice = v2

iceρice.
Therefore, we consider the basement parameters listed in

Table 1 as the free ones (the ones to be determined by an
inversion procedure are in boldface). Other parameters, inde-
pendent of the listed ones but considered to remain constant,
are the water viscosity ηw and the water electric permittivity
εw. The water viscosity is not expected to change significantly
from the chosen value (see Table 1) due to the studied geolog-
ical setting, whereas the electric permittivity could in principle
be considered as a possible free model parameter. However,
as it can be seen in Gueguen and Palciauskas (1994, Fig. IX.7),
for temperatures near and above 0◦C, εw remains almost con-
stant. Consequently, we considered εw to be constant, and
used εw = 85ε0 (Gueguen and Palciauskas 1994) in this work.
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Table 1 Values of model parameters used in the present study

Model Parameters
Glacier Ice

Density, ρice [kg m−3] 900� S-wave phase velocity, vice [m s−1] 1800�

Electric conductivity, σice [S m−1] 10−5‡

Glacier basement
Porosity, φ (0.3) Water mass density, ρw [kg m−3] 1000
Cementation exponent, m̂ 1.35 Water viscosity, ηw [Pa s] 1.7 × 10−3

Mass density of the solid grains, ρs [kg m−3] 2600 Salinity, C0 [Mol/l] (5 × 10−3)
Permeability, κ [m2] (2.11 × 10−12) Permitivity of water, εw [F m−1] 85 ε0

Matrix shear modulus, Gb [Pa] (4.77 × 108) Temperature, T [K] 273
Top depth, zb [m] (200)

Note: Those not shown in this table can be obtained from them using the formulas given or referenced in this work. Parameters displayed in boldface are the
inversion study free ones, their constant values between round brackets – referred to as ‘true values’ – are the ones used to compute the noiseless synthetic field
data. Note that, as explained in Section 3, the true values for κ and Gb are computed in terms of φ from rock physics models. Values marked with a � symbol are
taken from Collins, Frank and Metzler (2016), those marked with a ‡ symbol are given in Petrenko and Whitworth (1999). The vacuum permittivity is taken to be
ε0 = 8.85 × 10−12Fm−1.

We turn now the attention to the non-free parameters
of the model. For the basement electric conductivity σb, we
used Archie’s law (Archie 1942; Mavko, Mukerji and Dvorkin
2009)

σb = σw

F
, (9)

where σw is the electric conductivity of the saturating water
in the glacier basement, and F = φ−m̂ is the formation factor,
which expresses the reduction of the water conductivity due
to the presence of the electrically insulating rock matrix. As
described in Monachesi et al. (2018b), for water containing
just dissolved NaCl, we can use σw = ∑

l=Na+,Cl− (ezl )
2bl Nl ,

where e = 1.6 × 10−19 C is the electron electric charge, and
zl is the ions’ valence; we used zl = 1 for both species. The
ions’ mobility bl and concentration Nl , both dependent on
the salinity C0, are calculated following Carcione, Seriani and
Gei (2003). Note that the way in which we compute the bulk
electric conductivity implies that the basement rock matrix is
assumed to be clean, that is it does not contain a significant
amount of clay. Had we considered otherwise, we would have
used a corrected version, including the surface conductivity
(Schön 1996), for which several models exist (a couple of
them are discussed in Zyserman et al. 2017b).

To finish, we analyse the electrokinetic coupling coef-
ficient L0 in equation (8), which depends on the non-free
parameters ζ , d and . We follow Pride (1994) and Santos
(2009) for the treatment of their dependence on the free model
parameters. For the ζ potential, we use

ζ = (
0.008 + 0.26 log10(C0)

)( pH − 5
2

)
. (10)

In this work, pH = 7 is employed. The parameter d,
as we mentioned above, is the Debye length, computed
as

d−1 =
√√√√ ∑

l=Na+,Cl−

Nl (ezl )2

εwkT
. (11)

Here k = 1.3807 × 10−23 J/K is the Boltzmann’s constant and
T is the temperature; we use for zl and Nl the same values as
for the water conductivity σb. Finally, the parameter , which
can be seen as a pore surface to volume ratio (Johnson, Koplik
and Dashen 1987; Pride 1994) is computed as

 = 2
√

Fκ. (12)

4 C OMPUTATION OF THE S YNTHETIC
D A T A

The values of the model parameters used to compute the syn-
thetic data are listed in Table 1. Those not shown in the ta-
ble can be obtained from them using the formulas given or
referenced above. Of course, at this stage we also need to
choose values for the free parameters, that is the ones we use
in next sections in the inversion study. The chosen values are
referred to as the ‘true values’ and they are displayed between
round brackets. Note that when computing the synthetic data
we decided, instead of assigning arbitrary values to the base-
ment permeability κ and shear modulus Gb, to use a rock
physics model to obtain them. For the estimation of the base-
ment solid matrix shear modulus Gb, we use Walton’s model
(Mavko et al. 2009), appropriate to model unconsolidated

C© 2020 European Association of Geoscientists & Engineers, Geophysical Prospecting, 68, 1633–1656



Bayesian inversion of joint SH seismic and seismoelectric data 1639

media (Pride 2005; Bordes et al. 2015; Dupuy, Garambois
and Virieux 2016):

Gb = 1
10

[
3(1 − φ)2Ĉ2 P

π B2

]
, with B = 1

4π

(
1

Gs
+ 1

Gs + λc

)
.

(13)

In this equation, Ĉ is the coordination number, related
to the packing of the spheres building the solid aggregate, P

is the hydrostatic pressure and λc is Lamé’s coefficient of the
effective grain material, and is computed as λc = Ks − 2

3 Gs ,
where Ks is the bulk modulus of the solid grains. In this work,
we consider Ĉ = 9. The hydrostatic pressure can be computed
as P = P0 + ρicegzb, being P0 = 101, 325 Pa the air pressure
at the surface of the Earth and g = 9.81 m s−2 the gravity
of Earth. Taking Gs = 45 GPa and Ks = 36 GPa representa-
tive for the shear and bulk moduli of quartz grains, respec-
tively (Mavko et al. 2009), we obtain, as displayed in Table 1,
Gb = 0.477 GPa. To compute the value for the basement per-
meability to be employed in the computation of the synthetic
field data, we use (Mavko et al. 2009)

κ = 1
72

(
Dq

φF

)2
φ3

(1 − φ)2 ; (14)

in this model, referred to as Kozeny–Carman equation, Dq =
8 × 10−5 m is the diameter of the quartz grains. Using φ = 0.3,
one obtains κ = 2.11 × 10−12 m2, as displayed in Table 1.

Having all the model parameters set, we can turn our
attention to the shear horizontal seismic source and the sim-
ulation of noisy data. To calculate the time signature of the
source F s(t), we use a Ricker wavelet with peak frequency
fpeak = 120 Hz; its peak amplitude, located at t = 8 × 10−3

s, is set so that the maximum amplitude of the force per unit
area at the surface is 1 N m−2. Monachesi et al. (2018b) fol-
lowed previous studies of shear wave sources (Bordes 2005;
Krawczyk et al. 2013) to compute a source amplitude close to
actual field values. In that case, the aim was to test the feasi-
bility of the seismoelectric method by estimating the minimum
amplitude that would be recorded at the surface, for which a
realistic amplitude value is crucial. In the present study, we
focus on testing the feasibility of retrieving the model param-
eters from the data. We set a recording time of 1.024 seconds,
and Fourier transform the source using a sampling period of
0.5 ×10−3 s to take Nt = 2048 samples in the frequency do-
main. The seismic and electromagnetic responses are com-
puted in the frequency domain, and inverse Fourier trans-
formed to recover them back in the time domain (see the
Appendix). The number of samples is chosen as a power of
2 in order to efficiently employ the fast Fourier transform

when going to the frequency domain and its inverse to move
backwards to the time domain. In Fig. 2, we show the time sig-
nature of the source, and the computed time traces for solid
displacement and electric field at the surface. We set z = 0
and for each frequency, we use equation (A1) to get ux(0) and
equation (A6) to get Ex(0). Afterwards, we inverse Fourier
transform them and obtain the traces displayed in the figure.
We do not employ the magnetic field in the inversion because,
as stated in Monachesi et al. (2018b), its amplitude at the sur-
face is very small compared to its amplitude below the glacier
basement, and thus very difficult to be measured.

The synthetic data d = (dE, dS) are computed according
to the following expressions

dE,i = (1 + pEri )d̂E,i , (15)

dS,i = d̂S,i + pSri . (16)

In this equations, d̂E,i is the ith sample of the time series
that represents the noise-free computed electric field and d̂S,i

the corresponding sample for the noise-free computed solid
displacements. ri is the ith sample of an Nt-dimension random
noise time series following a zero mean normal distribution,
while pE and pS are positive factors controlling the amplitude
of the noise we want to add to the noiseless electric and seismic
signals, respectively. Note that the noise added to the electric
and seismic noise-free data, nE,i and nS,i , are different. For the
electric case, we assume nE,i = pEri d̂E,i , that is, the noise is
proportional to the signal so its amplitude is controlled by d̂E,i

and pE, whereas for the seismic case nS,i = pSri , that is, the
noise is independent from the signal (Chen et al. 2007). The
way the error term is generated for each type of field follows
their own standards. In the seismic case, one way to quantify
the noise level is by means of the signal-to-noise ratio (SNR)
(Robinson and Treitel 2000) which can be defined as the ratio
of the squared l2- norms of the clean data and the noise, that
is,

SNR = ||d̂S||22
||nS||22

= ||d̂S||22
p2

S ||r̂||22
, (17)

which means that pS can be chosen to yield a predefined
value for SNR. In the electric case, synthetic data are gener-
ated adding to the noiseless data a percentage of such signal
multiplied by a random noise series (Kalscheuer et al. 2010;
Rosas-Carbajal et al. 2014). The noise term corresponding to
both electric and seismic signals can be thought as the error of
the measurements simulated by the synthetic data set. Given
the way these are calculated, the errors result to be uncor-
related. The way the noise is constructed allows us to tune
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(a) (c)(b)

Figure 2 (a) Time signature of the shearing force F s (t) employed as source, (b) the solid displacement ux(t) and (c) the electric field response
Ex(t), both computed at the surface (b and c show the noise-free time series to which various levels of noise were added prior to inversion).

different errors in terms of SNR and percentage of noiseless
signal for the seismic and electric case, respectively, so that we
are able to obtain synthetic data that permits to accomplish
our feasibility study.

5 B AYES IAN INFERENCE OF R ELEVANT
M O D E L PA R A M E T E R S

The resolution of the inverse problem aims at determining the
model parameters presented before, together with their un-
certainties. Following a probabilistic approach implies that,
instead of searching an exact model, we intend to character-
ize the full posterior probability density function (pdf) of the
model parameters. This function is related to the previous
knowledge about the model, and to the pdf of the data set
given a certain model, through Bayes’ theorem:

p(m|d) = p(m)p(d|m)
p(d)

, (18)

where p(m|d) is the posterior pdf of the model parameters
conditioned on the data set; p(m) is the prior pdf, which ac-
counts for the a priori information of the model parameters;
p(d|m) is the probability of the data conditioned on the model
parameters, which also appears in the literature as the likeli-
hood function; and p(d) is the pdf of the data, also known as

evidence, which is constant for a fixed model parametrization.
As the present work involves such type of parametrization, we
can dismiss the evidence and, instead of using the equality in
equation (18), we employ a proportional relationship to ob-
tain the posterior pdf:

p(m|d) ∝ p(m)p(d|m). (19)

Whenever possible, p(m|d) should be obtained by pro-
viding explicit expressions for p(d|m) and p(m). In practice,
this is rarely possible, especially for calculating p(d|m), which
often implies the use of numerical methods to solve the for-
ward problem. We thus have to resort to numerical methods,
which may allow us to retrieve the marginal pdf of each sep-
arate parameter of interest instead of the complete posterior
distribution p(m|d), or effectively sample the parameter space
to obtain a collection of models which follows p(m|d). In the
following, we describe each of these strategies.

5.1 Marginal distributions via numerical integration

As a first approach to characterize the uncertainty of the model
parameters m in a Bayesian framework, we attempt to calcu-
late their marginal posterior distributions. Following Brandt
(1989), let f (m) be the joint probability density of M variables
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m = (m1, m2, . . . , mM). The marginal distribution of a single
parameter mr is given by

gr (mr ) =
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
f (m)dm1 dm2 · · · dmr−1

dmr+1 · · · dmM (20)

and it can be interpreted as the probability density of mr ,
accounting for the uncertainty of the remaining model pa-
rameters. Then the marginal distribution gr (mr ) can be used
to compute the mean μr and variance σ 2

r of mr as

μr =
∫ ∞

−∞
mr gr (mr )dmr , σ 2

r =
∫ ∞

−∞
(mr − μr )

2gr (mr )dmr .

(21)

In our case, the vector of model parameters, which refers
to the glacier depth and basement properties, is characterized
as follows:

m = (φ, zb, Gb, κ, C0). (22)

Instead of working with the proper values for the bulk
modulus, the permeability and the salinity, the inversion and
the previous sensitivity analysis are performed in log10 scale.
This is because these parameters present order-of-magnitude
variations in nature, and so it is more reasonable to explore
the space of model parameters using a log10 scale (Tarantola
2005). Regarding the parameters that are sampled in log10

scale, it is worth to mention that each one of them has
dimensions and the units of each magnitude are accordingly
indicated.

We assume a Gaussian behaviour of the data errors and
uniform prior distributions for the model parameters (i.e.
Jeffreys priors for log10 variables, Tarantola 2005). The Gaus-
sian behaviour of the data means that p(d|m) in equation (19)
corresponds to an exponential function whose argument con-
tains the difference between the data and the response pre-
dicted by the model. A uniform prior implies that, for each
parameter mr , all the values lying in the chosen interval have
the same probability. Under these hypotheses for the model
parameters and the data and following equation (19), p(m|d)
has the form:

p(m|d) = V exp
(

−�

2

)
, (23)

where V is a normalization factor and � is the data misfit,
whose explicit form will be given in Section 6.2.

In this way, if we consider for example the porosity, its
marginal distribution can be obtained according to equation
(21) as

gφ(φ) =
∫ zb,max

zb,min

∫ Gb,max

Gb,min

∫ κmax

κmin

∫ C0,max

C0,min

p(m|d) dzb dGb dκ dC0,

(24)

where the minimum and maximum values of the integrals
result from the non-zero limits of the corresponding prior
distributions. Note that we can compute the coefficient V

appearing in equation (23) by employing the condition that
the integration of p(m|d) over the whole parametric space is
equal to 1. Therefore,

V−1 =
∫ φmax

φmin

∫ zb,max

zb,min

∫ Gb,max

Gb,min

∫ κmax

κmin

∫ C0,max

C0,min

exp
(

−�

2

)

dzb dGb dκ dC0 dφ, (25)

and the mean value and variance are given by

μφ = V−1
∫ φmax

φmin

φgφ (φ) dφ, σ 2
φ = V−1

∫ φmax

φmin

(φ − μφ )2gφ (φ)dφ.

(26)

The mean values and variances of the other model parameters
are obtained in the same way.

To accomplish this task, we resort to multidimen-
sional numerical integration, which is not easy to implement
(Press et al. 2007). A straightforward generalization of one-
dimensional numerical integration leads to very long comput-
ing times even for integrals in low dimensions as the ones we
are dealing with. We therefore employ the multidimensional
integration library Cuba (Hahn 2005), which offers four dif-
ferent approximation methods to compute the integrals. We
tested all of them, and because of its better performance we
decided to work with the Divonne routine.

5.2 MCMC inversion

Analytical solutions to equation (18) are seldom possible.
Markov chain Monte Carlo (MCMC) algorithms can be used
to sample the posterior probability density function (pdf)
by searching through the parameter space (Tarantola and
Valette 1982; Mosegaard and Tarantola 1995; Sambdridge
and Mosegaard 2002; Ter Braak 2006; Vrugt et al. 2009;
Rosas-Carbajal et al. 2015). Monte Carlo methods draw sam-
ples of the desired distribution and Markov chains guide prop-
erly this sampling in an efficient manner. Under certain con-
ditions, Markov chains become independent from the initial
state and, after a burn-in period, they converge to its station-
ary distribution (Gilks, Richardson and Spiegelhalter 1995).
Therefore, we have to construct a Markov chain such that
its stationary distribution is the one we are seeking. There
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are many ways to accomplish this task, but in general the
Metropolis–Hastings algorithm is used. Briefly, given the cur-
rent state of the chain mt, a candidate point m∗ is drawn from
a proposal distribution which then is accepted with probabil-
ity α:

α(mt|m∗) = min
{

1,
π (m∗)q(mt|m∗)
π (mt)q(m∗|mt)

}
, (27)

where π (·) is the target distribution and q(·) is the proposal
distribution. If the candidate point is accepted, then mt+1 =
m∗. Otherwise, the chain remains in the current state (Gilks
et al. 1995). We employ an Adaptive Metropolis scheme,
in which the proposal distribution is updated according to
the samples that are continuously drawn from the posterior
(Hassan, Bekhit and Chapman 2009). This scheme, after a
certain amount of iterations, will produce samples that follow
the posterior distribution we are looking for. As we are using
uniform priors, the acceptance rule can be calculated in terms
of the ratio of the likelihoods of two states (Mosegaard and
Tarantola 1995).

The MCMC algorithm is implemented through the Dif-
feRential Evolution Adaptive Metropolis algorithm (Vrugt
et al. 2009), which efficiently copes with non-linear problems.
A remarkable feature of this algorithm is that it uses several
Markov chains in parallel to converge to the target distribu-
tion. The information recovered by the chains is mixed using
a formulation that incorporates properties of genetic algo-
rithms. The following equation describes such behaviour:

zi = xi
t−1 + γ

(
X

r j
t−1 − X

r2
t−1

)
+ ε, r1 	= r2 	= i, (28)

where zi is a sample of the ith chain, which combines a sam-
ple of the previous iteration of the same chain xi

t−1 with a
linear combination of members of the rest of the chains X

r1
t−1.

The constant γ sets the jump rate with which the chains sam-
ple different regions of the parameter space. This allows to
automatically tune the scale and orientation of the proposal
distribution. ε is the perturbation of ergodicity, which controls
how much a state of the chain depends on the previous one.
The choice of the different values follows the criterion stated
in Vrugt et al. (2009), where the optimal value is given by
the expression γ = 2.38/

√
2δ, where δ is the dimensionality

of the problem, which refers to the number of parameters de-
sired to be constrained in the inversion. This quotient comes
from the properties of Random Walk Metropolis and this
factor is appropriate for Gaussian distributions. Finally, the
convergence of the chains to the target distribution is expected
to be reached when the Gelman–Rubin factor (R̂) is less than
1.2 (Gelman and Rubin 1992).

6 R E S U L T S

We start by briefly describing the synthetic seismic and electric
signals produced or electrokinetically induced, respectively,
by the seismic source. We follow by studying the sensitivity of
the data to the model parameters and we end this section by
analysing the outcome of the chosen inversion methods.

6.1 Forward model: seismic and electric data

The time signature of the noiseless solid displacement com-
puted at the surface (Fig. 2) exhibits four events evenly spaced
in time; three of them are clearly observable in the figure and
the last one is a tiny hump. The first signal arrives at the very
moment the source energy is released, because it corresponds
to the direct wave. A second arrival occurs 0.22 seconds after
the detonation of the source. This is the time needed by the
wave in its way forth and back between the surface and the
glacier-basement interface (the velocity of the seismic wave
is 1800 m/s and zb = 200 m), corresponding to a first reflec-
tion at the interface. The third event arrives at twice the time
of the second one, corresponding to a second reflection at
the glacier-basement interface. Finally, the fourth arrival is
recorded at a time 0.66 seconds, and corresponds to a third
reflection. Note that the amplitudes of the consecutive events
are diminishing with time. This is because when the wave hits
the interface, part of its energy is released to the basement as
a transmitted wave, while the remaining energy travels back
to the surface as a reflected wave. The amplitudes of both
reflected and transmitted waves at the nth incidence at z = zb

are given by equations (A2) and (A4), respectively (see the
Appendix).

Turning now the attention to the electric field (Fig. 2c), it
can be noticed that three events are recorded within the con-
sidered time window. The first one arrives at 0.11 seconds,
which is half the arrival time of the second seismic event. This
recorded arrival is due to an interface response (IR) produced
when the seismic wave hits the interface. As it was studied in
Monachesi et al. (2018b), the source of this IR is the jump
in the electric current density occurring at the interface be-
tween the glacier and its basement (the current density is zero
at the ice because of the absence of fluids, and is different
from zero at the glacier basement). Once the seismic wave
hits the interface, the produced IR travels to the surface at
a speed given by

√
2ω/(μ0σ ); this is approximately 105 m/s

at the source peak frequency, much higher than that of the
seismic wave. This explains why the observed arrival time
for the first event is half the time of the first seismic arrival.
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Figure 3 Misfits computed as a function of the porosity φ. (a) The electric contribution to the total misfit, for three percentages of error in the
electric data. (b) The seismic misfits due to three signal-to-noise ratios in the seismic data. Both the seismic and electric traces comprise all time
samples, Nt = 2048.

Regarding the second and third events, it is now clear from
simple inspection of Figure 2 that they, respectively, corre-
spond to IRs produced by the second and third incidences of
the seismic wave over the interface. Note that as in the case of
the solid displacement, the electric field shows an amplitude
decay for the consecutive events. This is because the ampli-
tude of the electric field is proportional to the amplitude of the
electric current density (see equations (A6) and (A10)) which
in turn is proportional to the amplitude of the solid displace-
ment.

6.2 Sensitivity analysis in terms of data misfits

To evaluate the possibility of retrieving the relevant model
parameters through data inversion, we study their influence
on the seismic and electric data misfits. We choose an l2-
norm measure for the electric field and solid displacements
data misfits, which is adequate for Gaussian errors (Rosas-
Carbajal et al. 2014, 2015). The seismic and electric misfits
are

�E =
Nt∑

i=1

(
dE,i − d̂E,i

pEdE,i

)2

, �S =
Nt∑

i=1

(
dS,i − d̂S,i

pS

)2

, (29)

respectively. The denominators in �E (�s) are their corre-
sponding standard deviations of the ith electric field (solid
displacements) errors. The misfit for the joint problem is

� = �E + �S, (30)

which is replaced in equation (23) to calculate p(m|d). To
study the sensitivity of each relevant parameter, we cal-
culate the misfit between the synthetic data and the for-

ward model response computed using the true model pa-
rameters, except for the parameter chosen to perform the
analysis.

First of all, we evaluate how many events are appro-
priate to be considered in the sensitivity analysis and conse-
quently in the inversion study. It is clear that n cannot be
higher than 3, because the third event has already a very small
amplitude (Fig. 2b). Moreover, the seismic and electric traces
with n = 1 have already all the physical information we want
to recover. However, increasing the number of events pro-
vides a larger data set, which from a statistical point of view
reinforces the probabilistic approach, according to the law
of large numbers (Jeffreys 1998). This is why we choose to
use the traces with three events, which leads to a data set of
N = 2Nt = 4096.

We now determine through a misfit analysis whether the
seismic and electric data are sensitive or not to changes in
the model parameters. We perform this study by varying each
one of them at a time over a predefined prior domain, while
leaving the others fixed and equal to the true values. The best
scenario is that the log-misfits exhibit a clear and sharp mini-
mum around the true value for each parameter. For the electric
data, we employed three percentages of error to corrupt the
true model response: 5%, 10% and 15%. In the seismic case,
we generated synthetic data sets using SNR = 10, 20 and 50.
The electric misfit exhibits a sharp minimum near the true
value for the porosity parameter, whereas the seismic data
misfits present smooth minima near the true value of poros-
ity for the three signal-to-ratio (SNR) cases (Fig. 3). Both
the electric and seismic misfit show a sharp minimum near
the true value of the depth (Fig. 4), though the curves differ
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Figure 4 Misfits computed as a function of the depth of the top of the basement zb. (a) The electric contribution to the total misfit, for three
percentages of error in the electric data. (b) The seismic misfits due to three signal-to-noise ratios in the seismic data. Both the seismic and
electric traces comprise all time samples, Nt = 2048.

considerably from the behaviour as a function of the porosity,
presenting an oscillatory behaviour. The electric and seismic
misfits also present sharp minima as a function of the shear
modulus in all cases (Fig. 5). The seismic case minima are a
little bit smoother than the electric ones, but are still very dis-
tinctive. The electric misfit show sharp minima near the true
value of the permeability, while the seismic misfit remain con-
stant for permeabilities lower than 10−10 m2 (Fig. 6). This fact
is correlated with the results of the inversion of seismic data
(Section 6.4). Finally, the misfit analysis of the salinity is only
referred to the electric data because the physics of the problem
do not relate the seismic response to this parameter. There are

also sharp minima near the true value of the concentration
(Fig. 7).

We can conclude that the synthetic data are sensitive to
the whole parameter set. In general, the misfits become larger
for the lowest percentage of error in the electric data and the
highest SNR in the seismic data (both cases represent the less
realistic synthetics). This fact is key for the election of the
synthetic set for the inversion, because the numerical compu-
tation of the marginal distributions has problems dealing with
large misfits. We select the electric data with an error of 10%
of the amplitude of the response of the true model and the
seismic data with an SNR = 20.

Figure 5 Misfits computed as a function of the basement rock matrix shear modulus Gb. (a) The electric contribution to the total misfit, for
three percentages of error in the electric data. (b) The seismic misfits due to three signal-to-noise ratios in the seismic data. Both the seismic and
electric traces comprise all time samples, Nt = 2048.
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Figure 6 Misfits computed as a function of the permeability κ. (a) The electric contribution to the total misfit, for three percentages of error in
the electric data. (b) The seismic misfits due to three signal-to-noise ratios in the seismic data. Both the seismic and electric traces comprise all
time samples, Nt = 2048.

6.3 Multidimensional numerical integration

We first attempt to obtain the posterior marginal distribution
of each model parameter by integration, and from them the
resulting means and standard deviations. The computation of
the marginal probability density functions (pdfs) (see equation
(24) for the porosity case) is a numerically challenging task,
even with a dedicated software as the one we employ.

Figure 7 Electric misfit computed as a function of the water salinity,
for three percentages of error in the electric data. We do not display
the seismic misfits, because they are just constants, as expected. The
electric trace comprises all time samples, Nt = 2048.

Due to the large values of the misfit �, the computation
has to be performed in quadruple precision in order to avoid
the integrand to be identically zero. Indeed, as the minimum
misfit value is � = 4096, the highest value the integrand of the
marginal pdfs can take is exp(−2048), that is, approximately
3.7 × 10−890, a much lower value than the inferior limit the
double precision allows to represent. Furthermore, a simple
inspection of Figs 3–7 shows that the misfit takes values higher
than 104 but for a small interval enclosing the true values.
We mention this because beyond this value the integrand is
taken as zero, even in quadruple precision. Thus, in order to
be able to compute the marginal pdfs, that is, the numerical
algorithm performs an appropriate sampling near the true
values, we were forced to restrict the integration limits to
rather small intervals around them, which is equivalent to
considering small prior pdf ranges for p(m).

Having clarified this point, we show in Fig. 8 the ob-
tained posterior marginal pdfs of the model parameters. They
were obtained following a procedure that we here describe
for the porosity, but is similar for the whole parameter set.
The calculations follow this scheme: we choose 20 porosity
values equally distributed among the prior limits. We compute
the integral given in equation (24), that is a four-dimensional
integral, using the Divonne routine from the Cuba library.
Afterwards, we estimate the reciprocal of the normalization
factor V, by simply applying a one-dimensional Simpson’s
rule using the obtained discrete marginal distribution values
as ordinates, and the chosen values as abscissae. This result is
used to normalize the set of calculated gφ(φi ), i = 1, . . . , 20,
which we display in Fig. 8a. Finally, the mean value μφ
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(a) (b)

(c) (d) (e)

Figure 8 Marginal pdf, computed following the procedure described in Section 6.3 for (a) porosity, (b) glacier depth zb, (c) log10 of basement
shear modulus, (d) log10 of permeability and (e) log10 of saturating water salinity. Note that the considered integration intervals are: [.28,.32]
for φ, [195,205] for zb, [8.2,9.2] for log10(Gb), [−12.2, −11.3] for log10(κ) and [−2.6,−1.9] for log10(C0).

and the variance σ 2
φ (see equation (26)) are in turn com-

puted by again applying Simpson’s rule in one dimension. In
Table 2, we display the mean values and standard deviations
obtained for all the model parameters. The results obtained
by this methodology are, we deem, deceptively promising.
The marginal distributions are very narrow and their peaks

are very close to the respective true values, which is reflected
in the computed standard deviations. This is particularly true
for zb, for which just one value of gzb

(zb,i ), i = 1, . . . , 20 is
not zero. However, these results are at least a consequence of
having reduced the integration limits to small intervals around
the true values. We consider that this fact alone is enough to

Table 2 Mean value μ and standard deviation σ for the five random variables considered, obtained by means of numerical computation of
the integrals in equation (26) and using the DREAM algorithm. For the latter, we show values corresponding to single seismic inversion, single
electromagnetic inversion and joint inversion [Correction added on 16 April 2020, after first online publication: there were previously errors in
the layout of Table 2 and these have now been corrected in this version.]

Numerical integration DREAM
Seismic Inversion Electric Inversion Joint Inversion

Variables True value μ ± σ μ ± σ μ ± σ μ ± σ

φ 0.3 0.3 ± 8 × 10−4 0.29 ± 0.093 0.31 ± 0.046 0.3 ± 0.038
zb [m] 200 200 ± 0.0 200 ± 0.004 200 ± 0.0001 200 ± 0.0001
log10(Gb[Pa]) 8.68 8.7 ± 3 × 10−39 8.67 ± 0.031 8.68 ± 0.015 8.68 ± 0.012
log10(κ [m2]) −11.68 11.78 ± 5 × 10−12 −11.09 ± 1.4 −11.67 ± 0.09 −11.68 ± 0.076
log10(C0 [Mol/l]) −2.3 −2.29 ± 2 × 10−10 — −2.28 ± 0.08 −2.295 ± 0.072
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(a) (b)

(c) (d)

(e)

Figure 9 A single chain represents the search through the prior of the porosity (a), the depth (b), the shear modulus (c) and the permeability (d)
for the inversion of seismic data. (e) The convergence of log(p(m|d)) (for the three chains in colour blue, red and green) to the expected value
−Nt/2, denoted by the solid horizontal black line.

explore another methodology to characterize the model pa-
rameters uncertainty. In addition, the computational cost of
the discussed numerical integration method is not low, be-
cause to compute each marginal at least 106 forward problem
computations are needed.

6.4 Inversion via the DREAM algorithm

We now evaluate the possibility of retrieving the full posterior
probability density function (pdf) of the model parameters
using the DiffeRential Evolution Adaptive Metropolis algo-
rithm. We perform the inversion of both seismic and electric
data sets separately and jointly. For all cases, we use three par-
allel Markov chains, such that the model proposals of each
chain are created accounting for the current state of the two
others (see equation 28). The outcome of this process is a set of
models that follow the posterior pdf. To represent this pdf, we
display histograms of the last 50% of the chains states, once

convergence has been achieved. For all cases, we employed
uniform priors: [0.15,0.45] for φ, [150,250] for zb, [6,9] for
log10(Gb), [−14,−9] for log10(κ) and [−4, −1] for log10(C0).
The last parameter is only considered in the inversion of elec-
tric data and in the joint inversion of seismic and electric data,
as referred in Section 6.2.

We first present the results concerning the inversion of
seismic data alone. Figure 9a–d displays how the chains sam-
ple the parameter space (to clarify the curves, we only display
a single chain but the behaviour is similar to the remain-
ing two chains). The expected result is that the process of
sampling eventually converges near the true value of each
parameter. We tested different values of γ , around the op-
timal value of 0.85 (corresponding to δ = 4, the number of
parameters involved) in order to improve the exploration
of the parameter space. In the case of φ, the chains sample
the complete model space defined by the prior distribution
without converging to a smaller uncertainty range (Fig. 9a),
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(a) (b)

(c) (d)

Figure 10 Histograms of the basement porosity (a), the depth (b), the bulk modulus (c) and the permeability (d) for the inversion of seismic
data. The red cross indicates the true value for each parameter.

despite the relatively high number of iterations employed
(8×105 iterations). A straightforward convergence of the
chains near the true value can be observed for zb (Fig. 9b),
and the path of the chains for Gb has a fairly similar be-
haviour (Fig. 9c), except that the chains oscillate around the
true value in the end, but with a small amplitude. Finally, the
behaviour of κ is similar to that of φ (Fig. 9d), that is, the inver-
sion of seismic data is not able to constrain this value further
than the uniform prior pdf established. Besides collecting the
sets of model parameters accepted, the algorithm stores the
value of p(m|d) of each accepted set of parameters (see equa-
tion 23). This value is expected to be approximately −Nt/2
(−1024 in this case) for models that reproduce statistically
the data inverted. The chains indeed move around this value
(Fig. 9e).

We evaluate the results of the inversion through his-
tograms of the marginal distributions of the model parameters
(Fig. 10). These histograms are built using the last 50% of the
chains shown in Fig. 9, that is, only after the chains are con-
sidered to have converged according to the criteria by Gelman
and Rubin (1992). In this way, histograms are representative
of the marginal posterior pdf of each parameter, accounting
for the uncertainty of all the other parameters considered
(see equation 20). zb and Gb are the best resolved param-
eters of this inversion (Figs 10a and d, respectively). Their
histograms are rather bell-shaped, with peaks near the true
model values. Unlike the previously mentioned parameters,
φ and κ are not well resolved (Figs 10a and d, respectively).
This is evident from their respective histograms, nearly flat
and with maxima far from the true values. In conclusion,
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(a) (b)

(c) (d) (e)

Figure 11 Histograms of the basement porosity (a), the depth (b), the shear modulus (c), the permeability (d) and the salinity (e) for the inversion
of electric data. The red cross indicates the true value for each parameter.

the only reliable parameters in this inversion case are zb and
Gb.

The inversion of the electric data led to significantly im-
proved results. In this case, the optimal value of γ is 0.75 (cor-
responding to δ = 5), but the inversion worked with γ = 2,
using 8 × 105 iterations as in the seismic case. As the results
of the inversion of the electric data set do not differ signifi-
cantly from the joint case, we only display the histograms of
the model parameters. These parameters were all constrained
in this inversion case (Fig. 11a–e). All of them are fairly bell-
shaped and their maxima are very close to the true values.
In Table 2, we compare the parameters’ estimate values and
uncertainties to the true values used to build the synthetic
data. Here it can be clearly observed how the inversion of
electric data alone performs better that the corresponding of
seismic data alone. Besides being able to retrieve one more
model parameter, the mean values estimated are closer to the
true values, and the uncertainty ranges systematically smaller.
For example, the true value of the permeability expressed as
log10(k[m2]) is −11.68. The inversion of seismic data results

in the range of [−12.49,−9.69] of 68% probability (i.e. one
standard deviation), whereas in the electric case the range is
[−11.76,−11.58].

Finally, we consider the joint inversion of seismic and
electric data. This case required 9 × 105 iterations and a γ

value of 0.5, smaller than in the electric case and closer to the
optimal value of 0.75 mentioned above. Figure 12(a–e) shows
the chains searching through the parameter space. In the case
of φ, the chains oscillate around the true value with a high
amplitude but without covering the entire range defined in
the prior distribution (Fig. 12a). The chains for zb exhibit, as
in the seismic case, an immediate convergence to the true value
(Fig. 12b). Gb, κ and C0 display tiny oscillations around the
true value (Fig. 12c–e), which implies that the chains managed
to constrain the parameter space into a small range within
the prior pdf. The values of p(m|d) end up being close to
−2048, which is half the amount of data points (Fig. 12f), as
expected.

The histograms that represent the marginal distributions
of the model parameters are, as in the electric case inversion,
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Figure 12 (a)–(e) The convergence of the chains for each parameter, for the joint inversion (each chain is represented by the colours blue, red
and green). The chains move around the prior defined for each parameter. (f) The convergence of log(p(m|d)) to the expected value −N/2,
denoted by the solid horizontal black line.

fairly bell-shaped and with maxima almost coincident with
the true values (Fig. 13). Taking a look at Table 2, the mean
values of all the model parameters match the true values. In-
terestingly, adding the seismic data in a joint inversion scheme
contributes to further constraining the uncertainty ranges
of the model parameters. The uncertainty range of the per-
meability, following the analysis of the separate inversions,
is further reduced in the joint case, reaching the interval
[−11.76, −11.6] for the uncertainty ranges of the whole pa-
rameters. This result reinforces the advantages of seismoelec-
tric data over seismic data stated in Section 1 (Mahardika et al.

2012; Mahardika 2013). It is clear that the electric data alone
already provide a great improvement in the inversion results,
but the joint case is able to slightly improve the determination
of the uncertainties of the parameters.

7 D I S C U S S I O N

The present study aimed at evaluating the capability of the
shear horizontal (SH) seismoelectric method to retrieve rele-
vant parameters about glacial systems. The results obtained
are encouraging because they suggest that the inversion of

real solid displacement and electric field data may be feasible
and informative.

The sensitivity analysis showed that, under the assump-
tions made regarding the glacier properties, seismoelectric
data are sensitive to changes in subglacial properties like
porosity, basement depth, shear modulus of the basement,
permeability and salinity. Sensitivity to porosity, permeability
and salinity had already been suggested by Garambois and
Dietrich (2002) and confirmed by Zyserman et al. (2017a)
and Monachesi et al. (2018a).

We performed sensitivity tests for different percentages
of noise amplitude in the electric field (5%, 10% and 15%)
and different signal-to-noise ratios (SNRs) (10, 20 and 50) for
the seismic data. The least realistic cases (error of 5% for the
electric field and SNR = 50 for the seismic field) led in general
to the sharpest minima near the true model parameter values.
This may suggest that low-noise cases are the most suitable
to perform the inversion. However, sharp minima imply nu-
merical disadvantages in the calculation of multidimensional
integrals with large misfit values. Thus, the more realistic data
with a larger added noise of 10% error in the electric data and
seismic data with SNR = 20 were used for the inversion tests.
We have adopted a standard model for the electric noise. This
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(a) (b)

(c) (d) (e)

Figure 13 Histograms of the basement porosity (a), the depth (b), the shear modulus (c), the permeability (d) and the salinity (e) for the joint
inversion of seismic and electric data. The red cross indicates the true value for each parameter.

noise could be made more realistic to capture the nature of all
the noise sources potentially present in a broadband electric
signal. For example, the incoherent ambient noise affecting
seismoelectric data will be dominated by cultural noise (e.g.
power system noise), spherics (i.e. atmospheric electricity) and
instrumentation (amplifier) noise. The statistics of these noise
sources are expected to be essentially uniform over time (i.e.
stationary noise). It is expected that the inclusion of these
sources of noise would negatively impact the performance of
the inversion. However, the adopted model for the electric
noise could be suitable if some kind of tuned reception during
seismoelectric surveys was employed, for example a narrow-
band filter with central frequency equal to the peak frequency
of the source.

We studied the inversion of synthetic data using two dif-
ferent strategies. The inversion by means of multidimensional
integration allowed us to obtain marginal distributions of each
model parameter. This was successful to a certain extent, be-
cause the integration range was restricted to a very narrow
prior, which does not explore properly the parameter space.

This numerical problem is related to the misfit values, which
have at least an order of magnitude of 103. The exponential of
such numbers is very difficult to calculate even in quadruple
precision without obtaining a null result. Another drawback
is that obtaining a marginal distribution curve in a very small
portion of the prior demands a huge number of computations
of the forward model (106 for each parameter).

Given the limitations encountered with numerical inte-
gration, we then performed a Bayesian inversion applying a
Markov chain Monte Carlo (MCMC) algorithm. This allowed
us to work with the electric and seismic set separately and
jointly and to obtain histograms of the marginal distributions
of the model parameters in each case. In accordance to what
was observed in the sensitivity analysis, the inversions were
able to retrieve the relevant model parameters (with exception
of the porosity and the permeability in the seismic case), in
terms of marginal distributions centred around the true val-
ues. The inversion of electric data alone performed better than
that of the seismic data alone, in agreement with the studies by
Mahardika (2013) and Mahardika et al. (2012), and the joint
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inversion of both data sets resulted in the best estimates of all
model parameters, in terms of mean values closer to the true
ones and also in uncertainty ranges that were smaller. Each
case demanded no more than 9 × 105 iterations (forward
computations), which is an improvement with respect to the
5 × 106 evaluations of the forward model of the numerical
integration method. In addition, the MCMC algorithm does
not require a prior range significantly close to the true values,
which makes it a valuable tool to characterize glacier basement
properties. Therefore, we were able to retrieve the parameters
that characterize the basement properties of a glacier environ-
ment with Bayesian Monte Carlo inversion, with reasonable
uncertainty estimates. It is worth to mention that the glacier
bottom depth is a parameter that could be easily obtained
using only the seismic traveltime combined with the known
SH wave velocity of the ice. However, this independent
parameter estimation entails a certain uncertainty, which we
wanted to also test in the case of the electric data. Our results
indicate that the inversion of electric data alone, and the joint
inversion of seismic and electric data, result in smaller un-
certainties of the basement depth parameter compared to the
inversion of seismic data alone. As the DiffeRential Evolution
Adaptive Metropolis (DREAM) algorithm manages very well
the sampling of the 5-parameter space, there is no necessity
to remove this parameter from the inversion and assess it
separately.

Based on our results, it would be worth to perform a field
campaign and inversion of SH seismoelectric data in a glacier
environment, for instance employing an ELVIS generator
(Krawczyk, Polom and Beilecke 2013) for an SH source.
However, a feasibility study would be suitable to understand
the limitations of our approach. Such study could be based
on the numerical modelling by Zyserman, Gauzellino and
Santos (2010) and Zyserman et al. (2012). This work consists
on a finite element formulation of Pride’s equations in two-
dimensional (2D) – that is, one employing a source/subsurface
geometry configuration yielding 2D vector fields as solution
to these equations – which could be implemented and after-
wards incorporated in a Bayesian inversion using the DREAM
algorithm. An important remark with respect to moving to
2D or 3D geometries is that the amplitudes of the wavefields
will be different, which would in turn affect the results. The
number of parameters to be inverted could also be larger in
order to account for more complex models, thus needing par-
allel numerical codes implemented on clusters of computers.
Nevertheless, the results accomplished in this paper definitely
encourage the application and further theoretical studies on
the seismoelectric method in glacier systems.

8 C ONCLUSIONS

We have studied the seismoelectric response to a shear hor-
izontal seismic source deployed on top of a glacier, and
analised the feasibility of recovering relevant geophysical in-
formation such as glacier depth, porosity, permeability and
bulk shear modulus of the basement, as well as the salinity
of the water saturating the rock. A sensitivity analysis of the
parameters of interest confirmed that they were good candi-
dates to be characterized by inverting the synthetic data. We
used two different strategies to analyse the posterior marginal
distributions of the free parameters aforementioned. These
distributions give us information about the uncertainty with
which we may be able to characterize the parameters of inter-
est in a real field experiment. The multidimensional numerical
integration was able to retrieve marginal distributions, but at
the cost of using a narrow prior probability density function
interval for each model parameter, and a large number of iter-
ations. Thus, this approach may work only if sufficient good
information is known prior to the experiment. In contrast,
the use of the DiffeRential Evolution Adaptive Metropolis
algorithm to perform a full Bayesian inversion proved to effi-
ciently retrieve the posterior distributions employing broader
prior ranges and less number of iterations. This is a promising
result that ratifies the importance of combining different geo-
physical methods for an improved characterization of glacial
systems. Our work therefore encourages more field tests us-
ing seismoelectric data to obtain subglacial information, as
well as further efforts to build efficient numerical models that
account for more complex scenarios.
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sismo-électromagnétiques: Mise en oeuvre au laboratoire souter-
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APPENDIX: F INAL SOLUTIONS FOR ux, Ex

AND Hy.

The final solution for the solid displacement ux is given by
(Monachesi et al. 2018b):

ux(z) =

⎧⎪⎪⎨
⎪⎪⎩

− F s

iλiceGice
eiλicez +∑∞

n=1 U
R,zb,(n)
x e−iλice(z−zb)

+∑∞
n=1 UR,0,(n)

x eiλicez, 0 ≤ z ≤ zb,∑∞
n=1 U(n)

s,xeiλb(z−zb), z ≥ zb,

(A1)

where:

U
R,zb,(n)
x = iFs(λiceGice − λbGb)nei(2n−1)λbzb

λiceGice(λiceGice + λbGb)n
, (A2)

UR,0,(n)
x = i F s(λiceGice − λbGb)nei2nλicezb

λiceGice(λiceGice + λbGb)n
, (A3)

U(n)
s,x = 2i F s(λiceGice − λbGb)(n−1)ei(2n−1)λicezb

(λiceGice + λbGb)n
. (A4)

In these equations, λice and λb are the S-wave seismic
wave numbers of the glacier and basement, respectively, and
are given by

λice = ω

√
ρice

Gice
, λb = ω

√
1

Gb

(
ρb − ρ2

w

g0 − iηw/(κω)

)
. (A5)

The summation appearing in equation (A1) is made over
the nth reflection/transmission of the seismic wave at z = zb.

The electric and magnetic fields are given by

Ex(z) =

⎧⎪⎪⎨
⎪⎪⎩

Aicee
−ikicez + Bicee

ikicez 0 ≤ z ≤ zb,

Abe−ikbz + Bbeikbz − k2
beiλb(z−zb)

(k2
b − λ2

b)σb

∞∑
n=1

J (n)
v z ≥ zb.

(A6)
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Hy(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kice

ωμ0
Aicee

−ikicez − kice

ωμ0
Bicee

ikicez 0 ≤ z ≤ zb,

kb

ωμ0
Abe−ikbz − kb

ωμ0
Bbeikbz

− iλbeiλb(z−zb)

k2
b − λ2

b

∞∑
n=1

J (n)
v z ≥ zb.

(A7)

The coefficients kice = √−iωμ0σice and kb = √−iωμ0σb

are the electromagnetic wave numbers of ice and basement,
respectively. J (n)

v is the amplitude of the nth current density
originated at the nth transmission of the seismic shear wave
at z = zb, and is given by

J (n)
v = ω

ηw
κ

L0ρw(
g0 − iηw

ωκ

) 2F s(λiceGice − λbGb)(n−1)ei(2n−1)λicezb

(λiceGice + λbGb)n
. (A8)

Finally, the coefficients Aice, Bice, Ab and Bb are com-
plex constants which are determined by imposing proper

conditions for the fields at the contact between both media
and at the boundaries of the system. These constants are given
by

Aice = Bice = k2
b(λb − kb)−1

2
[
kice sinh(ikicezb) + kb cosh(ikicezb)

]
σb

∞∑
n=1

J (n)
v ,

(A9)

Ab = k2
b

[
kice sinh(ikicezb) − λb cosh(ikicezb)

]
eikbzb

(k2
2 − λ2

2)
[
kice sinh(ikicezb) + kb cosh(ikicezb)

]
σb

∞∑
n=1

J (n)
v ,

(A10)

Bb = 0. (A11)

Once the fields ux(z, ω), Ex(z, ω) and Hy(z, ω) are computed
for a given depth z, the time variation of these fields is obtained
by the inverse Fourier transform.

C© 2020 European Association of Geoscientists & Engineers, Geophysical Prospecting, 68, 1633–1656


