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Abstract: A deep learning approach to estimate the mean Doppler velocity and spectral width in weather radars is presented. It
can operate in scenarios with and without the presence of ground clutter. The method uses a deep neural network with two
branches, one for velocity and the other for spectral width estimation. Different network architectures are analysed and one is
selected based on its validation performance, considering both serial and parallel implementations. Training is performed using
synthetic data covering a wide range of possible scenarios. Monte Carlo realisations are used to evaluate the performance of
the proposed method for different weather conditions. Results are compared against two standard methods, pulse-pair
processing (PPP) for signals without ground clutter and Gaussian model adaptive processing (GMAP) for signals contaminated
with ground clutter. Better estimates are obtained when comparing the proposed algorithm against GMAP and comparable
results when compared against PPP. The performance is also validated using real weather data from the C-band radar RMA-12
located in San Carlos de Bariloche, Argentina. Once trained, the proposed method requires a moderate computational load and
has the advantage of processing all the data at once, making it a good candidate for real-time implementations.

1 Introduction
Weather radar plays an important role in the society daily life. Its
measurements are used to generate early meteorological alerts that
help disaster prevention. It also allows the improvement of weather
models, which in turn results in better forecasts [1, 2]. Signal
processing is essential to extract relevant information from the
measurements. In particular, Doppler processing techniques are
used to obtain the first three moments of the weather Doppler
spectrum, that is the power spectral density (PSD) of the received
signal. The weather signal power, or zeroth moment, is related to
the liquid water content and precipitation rate. The mean Doppler
velocity or the first moment describes the air velocity relative to
the radar. The spectral width or second moment represents the
velocity dispersion due to shear or turbulence [3–5].

Several spectral moments’ estimators have been proposed in the
literature. However, in practice, the most common approaches are
spectral processing (SP) and pulse-pair processing (PPP). SP
consists of the evaluation of the spectral moments by definition,
from a signal spectrum estimate. The use of the fast Fourier
transform (FFT) allows a low computational load for this approach.
However, the SP estimator is biased as a consequence of the finite
FFT resolution [6]. In PPP the spectrum moment estimators are
derived from the first two autocorrelation lag estimates. This
approach also has a low computational load, but its performance
degrades significantly at low signal-to-noise ratios (SNRs), <10 
dB, and when meteorological target spectral width increases [7].

The derivation of the spectral moments’ estimators in PPP
assumes that the radar return signal is composed only of a
meteorological target. However, in a general setup, the radar return
signal can be modelled as the sum of contributions from
meteorological targets, ground clutter – for low elevation angles –
and noise. Ground clutter, also plainly called clutter, is received
when the main lobe or sidelobes of the antenna illuminates static
objects on the ground like mountains, buildings, trees, among
others. The presence of clutter power, centred around zero velocity,
often biases the meteorological target spectral moment estimates
and must be taken into account to avoid this problem. It is accepted

that the PSD of the weather radar signal has – on average – a well-
defined structure, that can be modelled as the sum of a Gaussian-
shaped weather echo spectrum, centred around the mean weather
Doppler velocity, a Gaussian-shaped ground clutter spectrum
around zero velocity (if clutter is present), and a white noise
spectrum [8].

One of the first techniques used to mitigate ground clutter is the
application of a notch filter around zero Doppler velocity [9].
While this method is simple, filtering also eliminates part of the
desired signal, distorting it. Weather echoes with small radial
velocity are particularly sensitive to this method. To deal with this
issue, adaptive strategies that reconstruct the removed spectral
components have been proposed [10–12]. The Gaussian model
adaptive processing algorithm (GMAP) [10] works in the spectral
domain, processing the estimated signal PSD. It uses an adaptive
mask to filter the clutter and then attempts to recover the removed,
– i.e. overlapped – precipitation components considering the
Gaussian model for the meteorological target PSD. GMAP is
computationally efficient since it works in the frequency domain,
although its complexity is variable since it is an iterative algorithm.
Also, as it is a spectral method it suffers the effect of time
windowing which leads to spectral leakage.

GMAP has been implemented in the weather surveillance
radar-1988 Doppler (WSR-88D) [12] with a ground clutter
detection stage that controls its application consisting of the clutter
mitigation decision (CMD) algorithm [13]. CMD combines the
information from one signal phase parameter and four spatial
parameters into a fuzzy logic-based algorithm to distinguish
between clutter echoes and precipitation echoes. CMD presents a
good performance to identify clutter in anomalous propagation and
normal propagation but its performance can be improved via
algorithm tuning and the integration of polarimetric variables [14].

An algorithm that follows the ideas behind GMAP but works on
the time domain is the Gaussian model adaptive processing in time
domain (GMAP-TD) [11]. This method applies a filter to the signal
autocorrelation and recovers the precipitation signal component
through an iterative procedure based on fitting a Gaussian
autocorrelation precipitation model. By using signal
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autocorrelation instead of PSD, in the filter and reconstruction
stages, GMAP-TD avoids spectral leakage. However, it is
computationally intensive because it requires the inversion of
covariance matrices.

Another algorithm, clutter environment analysis using adaptive
processing (CLEAN-AP) combines a detection algorithm based on
the autocorrelation spectral density (ASD) [15] with a clutter
removal and weather reconstruction stage [12]. The use of ASD
preserves the phase information and allows detecting narrow-band
interference even when not centred around zero Doppler velocity.

There are also algorithms that seek optimal estimators, like
maximum likelihood or maximum a posteriori. In [16] the authors
proposed a spectral moments estimation method applying the
expectation–maximisation algorithm in a maximum a posteriori
estimation with hyperparameters learned from the actual
measurements of the ground clutter. It avoids removing the ground
clutter by jointly estimating the parameters of a weather echo and
the ground clutter, assuming a mixture of density functions model
to the Doppler spectrum. A practical limitation of this kind of
methods is the computational complexity to solve a non-convex
optimisation problem with a large number of parameters to
estimate.

Machine learning techniques and recently deep learning (DL)
techniques have been widely used in many research fields like
medical diagnosis, drug discovery, financial engineering, image
classification [17–20] among others and, also, have been used in
weather radar [16, 21–23]. In [21], different types of clutter
(ground clutter, sea clutter and anomalous propagation) are
identified using several radar measurement combinations
comprising the polarimetric meteorological parameters, by means
of artificial intelligence techniques including the support vector
machine, the artificial neural network (NN), the decision tree, and
the nearest-neighbour systems. The results show comparable
performance to fuzzy logic and Bayes classifiers. Recently, a
method that identifies hydrometeor types (e.g. heavy rain, wet
snow, ice crystals) based on DL and the fuzzy logic algorithm has
been also proposed in [22]. The model used is a convolutional NN
that consists of a supervised multi-layer NN which classifies the
hydrometeor type based on horizontal reflectivity, differential
reflectivity, differential propagation phase constant and co-polar
correlation coefficient. The algorithm was tested using a
WSR-98D/XD dual-polarisation weather radar data set and it
identified the main types of hydrometeors that are common in the
region where the radar is located.

Finally, a ground clutter suppression method using fuzzy neural
network (FNN) has been proposed in [23]. In this method, an FNN
is trained with the ground clutter data acquired by dual-polarisation
weather radar in clear sky conditions. Then, the ground clutter
polarisation parameters are adaptively calculated and finally the

ground clutter in the radar echo under the precipitation mode is
identified and suppressed by the trained FNN.

In this work, a new method for ground clutter mitigation and
estimation of mean Doppler velocity and spectral width of
meteorological targets is proposed, based on a deep neural network
(DNN). Training is done using synthetic data covering most likely
combinations of situations, such as different signal-to-noise ratios,
weather mean velocity, spectral width and the presence or absence
of different levels of clutter. A study for selecting a good
architecture among very simple to quite complex schemes for the
DNN is presented.

The trained DNN is also applied to real radar data. In this case,
a transfer learning approach [24] would be desirable.
Unfortunately, obtaining the ground truth for meteorological data is
unfeasible so this method cannot be used. Yet the results obtained
with a direct application of the synthetically trained DNN are
comparable to the ones of established methods like GMAP.

In terms of implementation, the use of an NN allows the
parallelisation of the estimation problem, making possible to
process all range cells [3] at once, thus the proposed algorithm is a
good candidate for real-time implementation.

The paper is organised as follows. The method and data
generation is presented in Section 2. In Section 3 different NN
architectures are trained and studied to select one of them. In
Section 4 the DNN performance is evaluated and compared against
PPP and GMAP. Real weather radar data from RMA-12 is
processed in Section 5. Finally, Section 6 presents the conclusions.

2 Method
We propose a DNN to estimate the meteorological target mean
Doppler velocity, vp, and spectrum width, σp; through a
classification approach. The DNN is trained both in situations
where clutter is present and where it is not present. Fig. 1 shows a
diagram of the proposed DNN architecture; it has two branches of
fully connected layers, one handling the vp estimation and the other
handling the σp estimation. The number of neurons in the output
layer of each branch, denoted as No

vp and No
σp, is equal to the

number of classes chosen for vp and σp, respectively. In Section 3 a
study to select the number of hidden layers and the number of
neurons in each layer is carried on.

As the DNN input we use an estimate of the signal PSD – Ni
discrete values – obtained from the in-phase and quadrature (IQ)
time series corresponding to each coherent processing interval
(CPI). The number of DNN input neurons, Ni, then depends on the
PSD length. It is important to mention that we define the CPI as the
number of pulses included in the antenna beamwidth [3]. The
number of samples in the CPI is assumed to be constant over all the
processed CPIs, and therefore so is the Ni value.

Fig. 1  General neural network architecture
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2.1 Data generation for training and validation

To train the DNN we generate a set of realisations of synthetic
weather radar data with diverse PSD [25], considering likely
situations of clutter-to-signal ratio (CSR), SNR, velocity (vp) and
spectral width (σp), to obtain a robust estimation model.

A very large number of realisations simulated for each situation
could be used to train the model. However, there are two factors
limiting this number in practice, hardware constraints, mainly
RAM memory, and the time required to train the DNN, which
increases with the amount of training data.

To achieve a reasonable trade-off between computation time
and training quality, we divide the parameter space for data
generation in a grid that accounts for the most common parameter
values with reasonable separation among them. For CSR, we
choose a grid of 15 uniformly spaced values from 0 to 50 dB. Also,
we include the situation in which there is no clutter present. For
SNR, we define a uniform grid of 15 elements from 0 to 50 dB.

In the case of σp we use a uniform grid of No
σp = 8 values, or

classes, in the range from 0.04 to 0.2 of the maximum
unambiguous velocity [va = (λ/4T)], where T is the radar pulse
repetition time (PRT). For vp we use a grid of No

vp = 30 values or
classes ranging from −1 + (1/30) to 1 − (1/30) of va.

In total 57,600 different meteorological cases are considered.
For every case we generate 20 IQ time-series data with Ni = 28
samples each [25]. Every IQ time series is windowed by a
Blackman window to reduce clutter sidelobes. The PSD is
estimated using Welch periodogram [26] and normalised by their
maximum value. The training data set (TDS) contains 1,152,000
different PSD realisations.

For the validation data set (VDS) the CSR and SNR grids are
divided into 20 uniformly spaced values from 0 to 50 dB (unlike
the 15 of the TDS), while the σp and vp grids remain the same as in
the TDS. This change is made in order to have a VDS with
situations not present in the TDS. With these parameter grids, a
total of 100,800 different meteorological cases are selected. For
every case we generate four IQ time-series data with Ni = 28
samples each. Every IQ time series is processed as before. The
VDS contains 403,200 different PSD realisations.

To train the DNN for usage with real data, the synthetic training
data is generated considering the true value of the radar asymptotic
clutter width, σc. This parameter refers to the clutter width
observed with an infinite-length data record and is a consequence
of the decorrelation between azimuth pulses as the antenna beam
moves [3]. The σc value can be calculated from the radar antenna
characteristics, like the one-way azimuth half-power width, the
wavelength (λ) and the rotation speed. In order to match the
RMA-12 specifications, we set σc = 0.13 m/s.

Fig. 2 shows a typical realisation of a normalised weather radar
signal PSD, composed of a weather target, ground clutter, and
noise. The simulation parameters are vp = 0.8va = 21.42 m/s,
where va = 26.78 m/s, σp = 2 m/s and SNR = 20 dB. From Fig. 2
we can infer that the weather target is around the simulated
velocity, but it is more difficult to state the spectral width from
simple inspection, yet the DNN handles this estimation correctly.

3 NN architecture selection
In this section, we study different architectures of fully connected
NNs in order to select the one that achieves better performance
after training. We consider NN with 1–3 hidden layers and the
different number of neurons. Larger NNs are not considered as
they overfit the model. Table 1 shows the number of neurons in
each layer for the 15 proposed architectures. 

We construct the synthetic TDS to be balanced, i.e. there is the
same number of training PSDs for each vp and σp class. We train
the 15 architectures by means of Tensorflow library, version 2.2.0
and Keras API [27, 28]. Every hidden layer uses a Relu [29]
activation function and the outputs layers use a softmax function
[20], which gives the probability of each output neuron in the vp
and σp branches. Categorical cross-entropy is used as the loss
function in both branches, since this is a classification problem
with more than two classes. Also, we choose Adam [30] for the
gradient-based optimisation. We set the learning rate, lr, the batch
size, bs, and epoch number, equal to 5 × 10−4, 1024 and 100,
respectively. We train the network in a PC with Intel core i3 8100
(3.6 GHz) processor, 16 GB of RAM and a Nvidia 1050 Ti GPU, 4 

Fig. 2  Weather radar signal PSD example
 

Table 1 Proposed neural networks architectures
Architecture Velocity first

hidden layer
Velocity second

hidden layer
Velocity third
hidden layer

Spectral width first
hidden layer

Spectral width
second hidden

layer

Spectral width third
hidden layer

1 50 — — 40 — —
2 100 — — 80 — —
3 200 — — 160 — —
4 400 — — 320 — —
5 800 — — 720 — —
6 50 100 — 40 80 —
7 100 200 — 80 160 —
8 200 400 — 160 320 —
9 400 800 — 320 640 —
10 800 1600 — 640 1280 —
11 50 100 150 40 80 120
12 100 200 300 80 160 240
13 200 400 600 160 320 480
14 400 800 1200 320 640 960
15 800 1600 2400 640 1280 1920
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GB of RAM. For every architecture we trained the NN using the
CPU and GPU to compare training and prediction times.

Figs. 3a and b show the accuracy for all architectures using the
VDS after training epoch 100 for vp and σp branches, respectively. 
For both branches, the architecture 12 is the one with the highest
validation accuracy. Fig. 4a shows the training time for all
architectures. Except for the architecture number one, in all cases,
the training time using the GPU is slightly less than using the CPU,

not representing an advantage. Fig. 4b shows the mean prediction
time for all architectures using the whole VDS (403,200 PSDs).
For this experiment, the prediction time is measured five times for
each architecture and processing unit. The standard deviation (std)
of these five estimates is shown using error bars. It can be seen that
these error bars are almost imperceptible, showing the precision of
the estimated time values. Note that prediction time for architecture
12 for both CPU and GPU are very similar. From Figs. 3 and 4 we
conclude that the architecture 12 is a good candidate to predict
precipitation velocity and spectral width for the case of PSD with
length, Ni = 28.

In case that the radar acquisition strategy results in PSD with
different number of samples, Ni, we propose to use a DNN with a
proportional number of neurons in each hidden layer, taking
Ni = 28 and architecture 12 as a reference. The number of output
neurons in each branch No

vp and No
σp, can be selected depending on

the required velocity and spectral width resolution. Also, the range
for σp can be selected depending on the different types of weather
phenomena expected and the particular needs.

3.1 Training and validation performance

We further analyse the performance of the selected DNN
architecture. Fig. 5a shows the training and validation loss, while
Fig. 5b shows the training and validation accuracy, for this
architecture, as a function of the epoch number. The accuracy is the
fraction of predictions that the classification is correct. The training
and validation loss decreases, and the accuracy increases with the
epoch number, meaning that the DNN is learning to predict the
correct classes.

From Fig. 5b the velocity branch accuracy is around 0.55 and
the spectral width accuracy is around 0.44, which seems to be poor
if good estimators are required. However, this is due to the uniform
weighting function used which accounts for one error whether the
estimated value is next to the true value, or if it is far from it.

To better explore the validation results, we analyse the distance
between the classes. The difference between the index of the true
class is subtracted from the index of the predicted class, resulting
in the velocity class error for vp and the spectral width class error

Fig. 3  Validation accuracy after training epoch number 100
(a) Velocity branch, (b) Spectral width branch

 

Fig. 4  Runtime for different architectures, for both CPU and GPU
(a) Training, (b) Prediction using validation data. The error bars are very small

 

Fig. 5  Training and validation performance for architecture 12
(a) Training and validation loss, (b) Training and validation accuracy
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for σp. These class distances are used to quantify the severity of the
misclassification.

Figs. 6a and b show histograms of the class errors for velocity
and spectral width branches, respectively. For both branches, >90%
of the class errors are within two classes of the true class, showing
that when errors occur the estimated value is still close to the true
value in most cases.

4 Results using synthetic data
In this section, we study the performance of the trained DNN. It is
worth noting that the TDS contains PDSs representing situations
with and without the presence of ground clutter. Herein, we
separately analyse the performance for each of these situations and
compare this performance against well-known and widely used
estimators: for the situation without clutter, presented in Section
4.1, we compare the DNN performance against the classic PPP;
while for the situation with clutter, presented in Section 4.2, we
compare the DNN performance against GMAP.

In all the cases, we use the sample bias and the sample std of
the estimates as metrics; and we analyse the performance for
different parameter values. Since there are three (or four) analysis
dimensions: vp, σp and SNR (and CSR when applicable), it is
difficult to present an analysis for simultaneous variations of these
parameters. For this reason, we present results for different
representative scenarios where we fix one (or two) parameters,
vary vp into a fine grid, and analyse three cases of the remaining
parameter.

The simulation parameters are presented in Table 2. All test
data are generated following [25]. In order to be fair in the
comparison between DNN against PPP or against GMAP, we select
the true vp values randomly, with uniform distribution in each of
the velocity branch output classes. This randomisation is done
again for each case analysed – i.e. a different set of true vp values is
used at each experiment.

4.1 DNN performance without ground clutter

We compare the DNN performance against PPP in the situation of
no clutter present. In this situation there are three parameters to
vary: vp, σp and SNR. We consider two representative scenarios:
for the first one, in Section 4.1.1, we fix SNR and analyse three
representative values of σp; while on the second one, in Section
4.1.2, we fix σp and analyse three representative values of SNR. In
each scenario, we set different values of the simulated mean
Doppler velocity, vp, ranging from −va to va. For each
configuration point – i.e. at each value of σp, SNR and vp simulated
– we conduct 1000 Monte Carlo runs.

4.1.1 Different spectral widths: We test three different values of
σp: 2, 3 and 4 m/s; fixing SNR to 20 dB. Figs. 7a and b show the
bias, bv̂p, and the std, σv̂p, in the velocity estimation, as a function of
vp. In the same way, Figs. 8a and b show the bias, bσ̂p, and the std,
σσ̂p, in the spectral width estimation, as a function of vp. The
different curves of each plot correspond to the results for different
values of σp using both PPP and DNN.

From Figs. 7a and b we can see that PPP performs better than
DNN. The larger DNN bias around zero velocity is mostly due to
using a DNN that is also trained for a signal with clutter. Indeed,
almost 94% (15 out of 16) sets in the TDS correspond to cases with
ground clutter. This effect also manifests in the velocity DNN bias
and std around zero Doppler velocity which increases for small σp,
since narrow signals around zero velocity are prone to be classified
as clutter. From Figs. 8a and b we can observe that DNN
outperforms PPP over the entire mean Doppler-velocity range,
indicating that the DNN can better distinguish the different

Fig. 6  Histogram of class errors
(a) Class error for velocity branch. The sub-figure corresponds to a zoom of the region
±5, (b) Class error for spectral width branch

 
Table 2 General simulation input parameters
Parameter Value
Fc, GHz (carrier frequency) 5.6
σc, m/s 0.13
vp, m/s (−va, va)
Ni, samples 28
Ts (pulse repetition time), ms 0.5
va, m/s 26.78

 

Fig. 7  Velocity error analysis of PPP and DNN for different σp and SNR = 
20 dB
(a) Bias, (b) Std
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simulated σp. Also, as in the velocity error analysis, the estimator
worsens around zero velocity. It is important to remark that the σp
values in use for testing (2, 3 and 4 m/s) do not exactly match any
of the output class values of the spectral width branch.

4.1.2 Different SNRs: We consider three different values of
SNRs: 10, 20 and 30 dB; setting σp to 4 m/s. Figs. 9a, 9b, 10a and
10b show bv̂p, σv̂p, bσ̂p, and σσ̂p, as a function of vp, respectively. The
different curves correspond to different values of SNR using both
PPP and DNN.

From Fig. 9a we can see that PPP shows almost no velocity
bias, while the DNN shows bias for velocities around zero, for the
same reasons as before. From Fig. 9b we can see that σv̂p is
approximately twice for DNN than for PPP for the particular case
of SNR = 10 dB, while they are comparable for the other SNR
values. From Figs. 10a and b we can observe that DNN has better
performance than PPP over the entire velocity range. For SNR = 
10 dB PPP shows a constant bias different from zero. This is
because the noise floor, which is obtained using [31], is
underestimated under these conditions.

Overall PPP performs better than DNN in terms of velocity
estimation, and DNN slightly outperforms PPP for spectral width
estimation. Also, DNN shows better performance for high and low
SNR, whereas PPP gives better estimates for medium SNR. Note
that PPP is a method that only works in the absence of clutter –
otherwise gives very biased estimates, while the proposed DNN
also works with clutter contaminated signals. This generality
penalises performance in the no clutter case.

4.2 DNN performance when ground clutter is present

We compare the DNN performance against GMAP in the situation
of clutter present. In this situation there are four parameters to
vary: vp, σp, CSR and SNR. We choose three representative
scenarios to show: for the first one, in Section 4.2.1, we fix SNR
and CSR, and analyse three values of σp; on the second one, in
Section 4.2.2, we fix σp and SNR and analyse three values of CSR;
while on the third one, in Section 4.2.3, we fix σp and CSR and
analyse three values of SNR. For each configuration point – i.e. at
each value of σp, CSR, SNR and vp simulated – we conduct 1000
Monte Carlo runs.

4.2.1 Different spectral widths: We test three different values of
σp: 2, 3 and 4 m/s; setting CSR to 40 dB and SNR to 20 dB.

Fig. 8  Spectral width error analysis of PPP and DNN for different σp and
SNR = 20 dB
(a) Bias, (b) Std

 

Fig. 9  Velocity error analysis of PPP and DNN for different SNR and
σp = 4 m/s
(a) Bias, (b) Std

 

Fig. 10  Spectral width error analysis of PPP and DNN for different SNR
and σp = 4 m/s
(a) Bias, (b) Std
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Figs. 11a and b show the bias, bv̂p, and the std, σv̂p, in the velocity
estimation, as a function of vp. In the same way, Figs. 12a and b
show the bias, bσ̂p, and the std, σσ̂p, in the spectral width estimation,
as a function of vp. The different curves of each plot correspond to
the results for different values of σp using both GMAP and DNN.

Note that in both cases the GMAP estimates get worse when vp
is around zero. In these situations the weather target and clutter
spectra overlap. Thus clutter is removed [10], significant parts of
the weather target spectrum are also eliminated and cannot be
properly reconstructed from the remaining data. For large vp
values, the metrics are similar since they only depend on the
performance of the underlying moments estimator – PPP is already
compared against DNN in the previous subsection.

Fig. 11a shows the bias of the mean velocity estimates, bv̂p.
GMAP bias estimates increase as σp increases because the centroid
of a wider spectrum is more affected after truncation. The case
where vp is close to zero is an exception since the truncation of the
central portion of the weather spectrum keeps symmetry and
reduces the bias. The opposite is observed in the std estimation
(Fig. 11b). When the spectrum is wider, the eliminated samples
affect the different realisations quite similarly – although in a
systematic way as observed in the bias.

For the case of spectral width estimate errors Fig. 12 shows that
GMAP estimates present larger biases and std's when the spectrum
is narrow. This is a consequence of removing clutter contaminated
samples which represent a relevant portion of the weather
spectrum.

Note that the proposed DNN generally outperforms GMAP
over the entire vp range. The velocity bias of DNN, Fig. 11a, is less
affected than GMAP around zero Doppler velocity. Note that the
shape of the bias curves is very similar for both methods,
suggesting that the estimation for low mean velocities in the
presence of clutter is hard. For the case of the velocity std σv̂p,
Fig. 11b suggests that around ±8 m/s, the performance of DNN is
slightly worse than GMAP, but GMAP bias for this velocity is
much worst, concluding that DNN performs better for all vp.

Analysing the spectral width metrics in Fig. 12, it can be seen
that the DNN performance is almost always better than GMAP, in
the entire vp range. In the sections where the std of the GMAP
estimates seem to be better, around vp values of ±10 m/s, but as
before, GMAP bias values are worst than DNN for this velocity.

4.2.2 Different CSR: We consider three cases of increasing clutter
power, represented by CSR values of 30, 40 and 50 dB, fixing the
spectrum width σp to 4 m/s and SNR to 20 dB. Figs. 13a, 13b, 14a
and 14b show bv̂p, σv̂p, bσ̂p, and σσ̂p, respectively, as a function of the
velocity vp. Analogous to the former analysis, the different curves
correspond to different values of CSR using both GMAP and
DNN.

Following the arguments of the discussion in the previous
subsection, GMAP estimates tend to get worse when vp is around
zero. From Fig. 13a it results in counter intuitive that the bias bv̂p is
greater for lower CSR. The reason is that for higher clutter power,
GMAP filters a wider low-pass spectrum region, truncating the
overlapped weather PSD in a more noticeable way when vp is
small. When the truncated region is wider, the resulting PSD is
noise-like, and the resulting estimate v^ p gets closer to zero. On the
other hand, when the truncated region is narrow, the truncated PSD
keeps more points of the original PSD, but the estimates are biased
towards the remaining components. Fig. 13b shows that the std is
greater when CSR is higher – i.e. DNN performance is better than
GMAP for larger CSR – as expected. From Fig. 14, the bias and
std of the GMAP spectral width estimates increase when the CSR
is higher, due to the greater spectrum truncation.

As in the previous analysis, it can be seen that DNN
outperforms GMAP, over the entire vp range.

4.2.3 Different SNRs: We consider three different values of
SNRs: 10, 20 and 30 dB; setting σp to 4 m/s and CSR to 40 dB.
Figs. 15a, 15b, 16a and 16b show bv̂p, σv̂p, bσ̂p, and σσ̂p, as a
function of vp, respectively. As before, the different curves
correspond to different values of SNR using both GMAP and
DNN.

Fig. 11  Velocity error analysis of GMAP and DNN for different σp, CSR = 
40 dB and SNR = 20 dB
(a) Bias, (b) Std

 

Fig. 12  Spectral width error analysis of GMAP and DNN for different σp,
CSR = 40 dB and SNR = 20 dB
(a) Bias, (b) Std
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We, again, observe the same behaviour discussed in Sections
4.2.1 and 4.2.2 in GMAP estimates for vp around zero. From
Fig. 15a we also see the counter intuitive behaviour of bv̂p,
becoming larger for higher SNR. The explanation is akin to the one
given in the previous subsection. When the SNR is lower, the

resulting PSD after truncation is noise-like, then v^ p is close to zero.
On the other hand, when the SNR is higher, the truncated PSD is
more distinguishable from noise, but the estimation is biased
towards the remaining spectral components. Note from Fig. 15 that

Fig. 13  Velocity error analysis of GMAP and DNN for different CSR, SNR 
= 20 dB and σp = 4 m/s
(a) Bias, (b) Std

 

Fig. 14  Spectral width error analysis of GMAP and DNN for different
CSR, SNR = 20 dB and σp = 4 m/s
(a) Bias, (b) Std

 

Fig. 15  Velocity error analysis of GMAP and DNN for different SNR, CSR 
= 40 dB and σp = 4 m/s
(a) Bias, (b) Std

 

Fig. 16  Spectral width error analysis of GMAP and DNN for different
SNR, CSR = 40 dB and σp = 4 m/s
(a) Bias, (b) Std
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the behaviour of bv̂p and σv̂p is analogous to the previous section
and once again DNN outperforms GMAP over the entire vp range.

4.3 Runtime analysis of DNN

In this subsection, we present a runtime analysis of DNN and
GMAP, under a well-defined simulation scenario. To perform this
analysis it is important to note that the DNN and GMAP algorithms
use different approaches.

Both algorithms include a first step of estimating the PSD from
time-series IQ data using the FFT. The other steps of the DNN
algorithm involve matrix multiplications, additions and evaluating
activation functions. On the other hand, the next steps of the
GMAP algorithm are iterative and their stopping conditions depend
on the results of the iteration. So, the number of operations in this
approach cannot be predicted. For this reason, we choose average
runtime as the metric to analyse complexity. The main
disadvantage of this approach lies in its dependence on the
particular implementation we make of the algorithms.

The general input simulation parameters are listed in Table 2,
where we use CSR = 40 dB, SNR = 20 dB and σp = 3 m/s. One
important thing to highlight is that the implementation of GMAP in
CPU requires processing one PSD at a time, but for the DNN
methodology, we can arrange all PSDs in a unique matrix of size
H × Ni and feed the DNN, where H is the number of all PSDs. All
simulations are performed on the same platform using Python in a
PC with Intel core i3 8100 (3.6 GHz) processor and 16 GB of
RAM.

Fig. 17 shows average execution time for both algorithms in a
logarithmic scale. We use 30 different vp values, and for each vp,
1000 different IQ time series are generated. In the case of GMAP,
we call it for every vp 1000 times using two for loops, one for vp

and the other for the 1000 Monte Carlo realisations. In the DNN
case, all PSDs are arranged in a matrix of size 30,000 × Ni to feed
de DNN, no for loop is required, and the total execution time is
divided by 30 to compare with GMAP. From Fig. 17 it is evident
that GMAP needs more time to converge for velocities around
zero, as expected due to the clutter and precipitation PSD
overlapping. Also, the DNN execution time is more than an order
of magnitude smaller than that of GMAP, making the proposed
algorithm attractive for real-time implementations in operational
weather radars.

5 Results using real data
In this section, we present the results of the proposed algorithm
performance using real weather radar data. We directly apply the
RMA-12 data to the DNN trained with synthetic data. A better
approach to deal with the Doppler processing estimation problem is
to retrain the last hidden layer using real weather PSDs, a
technique called transfer learning [24]. In practice, the use of this
technique is not possible due to the lack of labelled data, i.e. exact
knowledge of the weather parameters.

The measurements used were collected using the RMA-12
Argentinian weather radar, located in San Carlos de Bariloche city.
RMA-12 is a C-band polarimetric radar, designed and developed
by INVAP S.E. Data was recorded on 1 June 2015, under heavy
rain weather conditions.

We show the results that correspond to a complete sweep of the
horizontal polarisation (HH) at an elevation angle of 3.0°, ensuring
that precipitation and clutter components are present. The sweep
uses a uniform PRT, T, of 2 ms, resulting in an unambiguous
velocity, va, of 6.66 m/s.

Figs. 18a and b show the plan position indicator (PPI) displays
of the reflectivity and the Doppler velocity estimates, respectively,
obtained by means of PPP without ground clutter filtering. 

The regions of highest reflectivity observed in Fig. 18a
correspond to ground clutter. For example, at a range of 25 km and
an azimuth of 185° we identify the Cerro Catedral (2388 mamsl)
mountain and at a range of 60 km and an azimuth of 180∘ we
observe the Cerro Tronador (3554 mamsl) mountain. There is also
a group of less relevant mountains at 25 km range and 100°
azimuth, whose average peak is around 2000 m above the mean sea
level. In Fig. 18b these high reflectivity regions present an almost
zero mean velocity, as expected. Also, note that the velocity PPI
presents stripes of Doppler velocities of 5.7–6.6 m/s next to stripes
of Doppler velocities from −6.6 to −5.7 m/s, with abrupt transitions
between stripes. This behaviour suggests the existence of aliasing
as a consequence of the low unambiguous velocity value.

We apply the GMAP algorithm and the DNN algorithm to this
weather data set, in order to filter the ground clutter and to estimate
the spectral moments. Figs. 19a and c show the PPI displays of vpFig. 17  Execution time comparison between DNN and GMAP

 

Fig. 18  Real weather radar data
(a) Reflectivity, (b) Velocity estimate using PPP
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and σp estimates, respectively, after GMAP filtering. Analogously,
Figs. 19b and d show the PPI displays of vp and σp estimates,
respectively, obtained by the DNN.

Since real data is being used, we lack knowledge of the true
parameter values. Therefore, a rigorous quantitative analysis of the
results cannot be performed. Only a qualitative comparison of the
results obtained with the different estimators can be made.

From a qualitative analysis of Figs. 19a and b we observe in
both, the GMAP velocity and the DNN velocity, that the identified
ground clutter is suppressed and the weather target velocity is
obtained. In addition, the zones where there is no ground clutter,
the estimated Doppler velocity is similar for PPP, GMAP and DNN
methods. Naturally, the aliasing effect also appears when we apply
DNN or GMAP algorithms, since it is already present in the PSD.
In the same way, from Figs. 19c and d, the spectral width estimates
of GMAP and the DNN are similar. It is important to note that the
DNN always estimates spectral width values in the range
(0.04 − 0.2)va.

6 Conclusion
We present a novel method for meteorological target velocity and
spectral width estimation in weather radar that operates both when
ground clutter is present or not. It uses a DNN with two branches,
one for the velocity and the other for the spectral width
estimations. We study different NN architectures with fully
connected layers using the accuracy over the VDS as a metric. The
training and VDS consist of PSD estimates computed from
synthetic weather radar data, covering a wide range of possible
scenarios.

We divide the parameter space for the generation of training
data in a grid that accounts for the most common parameter values
from a trade-off between estimation accuracy and computational
load of the training stage. If the grid becomes denser, the
estimation error decreases. Although the ideal situation consists of
a continuous parameter space that accounts for every possible
meteorological situation, this is unfeasible in practice.

We define typical cases for testing the algorithm, evaluating the
bias and the std of the velocity and of the spectral width estimates
by means of Monte Carlo simulations using synthetic data in
different signal composition situations. We compare the DNN
performance against PPP and GMAP performance in these
situations. The proposed method outperforms GMAP over the
entire mean Doppler-velocity range. In the case of signals without
clutter, we observe that the DNN obtains biased estimates around
zero velocity, but the deviation is small and does not invalidate the
result. This degradation in performance is due to the fact that
almost 94% of the training data has ground clutter present. In
situations where only weather precipitation and noise are present, a
better solution to the estimation problem could be to use a DNN
trained without ground clutter PSD, only having precipitation and
noise PSD, but this approach requires a previous clutter detection
stage.

We make a runtime comparison between DNN and a serial
implementation of GMAP in a well-defined simulation scenario.
We show that DNN is fast given its ability to process all data at
once, making it a good candidate for real-time operation.

We also compared the DNN and GMAP performance using a
uniform-PRT sweep of real weather data. Although the formulation
of the proposed method is general, we tested it using data acquired
with RMA-12, a C-band weather radar, located in San Carlos de

Fig. 19  PPI plots show the performance of GMAP and DNN on RMA-12 measurements
(a) Velocity using GMAP, (b) Velocity using DNN, (c) Spectral width using GMAP, (d) Spectral width using DNN
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Bariloche, Argentina. We identify ground clutter regions based on
the topographic knowledge of the radar placement region. The
analysis shows that the trained DNN can estimate the weather
target velocity and the spectral width, with and without the
presence of ground clutter. The DNN presents a good performance,
similar to the commonly used ground clutter filter GMAP and the
PPP spectral moments estimation algorithm. It is important to note
that the success of the proposed DNN algorithm is due to the fact
that the statistical model used to generate the synthetic data in the
training stage fits well to the weather radar measurements. As
future work, it might be of interest to investigate the estimation of
the weather signal power. With the current formulation, this is not
possible as a consequence of the PSD normalisation. Another
possible next step is to extend these ideas to estimate the spectral
moments of data sequences that operate with staggered-PRT.

Furthermore, the proposed technique could be adapted to
contemplate other types of clutter such as wind turbine clutter
(WTC) [32, 33], sea clutter [34, 35] or biological clutter [36]. Also,
since about 25% of spectral measurements deviate from the
Gaussian model [8], the proposed DNN can be trained with
properly modelled non-Gaussian spectra to be able to deal with
these situations.
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