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Abstract

If X is the set of compact or p−Schatten operators over a complex Hilbert
separable space H, we study the existence and characterization properties of
Hermitian A ∈ X such that

|||A||| ≤ |||A+D|||, for all D ∈ D(X )

or equivalently

|||A||| = min
D∈D(X )

|||A+D||| = dist (A,D(X )) ,

where D(X ) is the subspace of diagonal operators of X in any prefixed basis
of H and ||| · ||| is the usual operator norm in each X . We use Birkhoff-
James orthogonality as a tool to characterize and develop properties of these
operators in each context. We also provide several illustrative examples.
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1. Introduction

The notion of orthogonality on an inner product space has been general-
ized to any normed space over K ∈ {R,C} in several ways. One of the most
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studied is the so-called Birkhoff–James orthogonality [11, 22]: for x, y ∈ X it
is said that x is Birkhoff–James orthogonal (B-J) to y, denoted by x ⊥BJ y,
if and only if

‖x‖ ≤ ‖x+ γy‖ (1.1)

for all γ ∈ K. If X is an inner product space, then B-J orthogonality is
equivalent to the usual orthogonality given by the inner product. It is also
easy to see that B-J orthogonality is nondegenerate, is homogeneous, but it
is neither symmetric nor additive. There are several works dedicated to the
study of this type of orthogonality, we cite for example [11, 22, 23, 10, 9, 2,
25, 8, 32, 31, 35, 36] in chronological order.

In a similar way, for every closed subspace B ⊆ X and x ∈ X we say x is
Birkhoff–James orthogonal to B (noted by x⊥BJB) if

‖x‖ ≤ ‖x+ b‖, for all b ∈ B,

that is ‖x‖ = dist(x,B). This x is also called a minimal vector and observe
that

x⊥BJB ⇔ x⊥BJ b for all b ∈ B. (1.2)

Problems related with existence, unicity and characterization of minimal
vectors in normed spaces were extensively studied in [3, 4, 5, 17, 20, 21].
Relative to the existence problem, if we consider B ⊂ A von Neumann al-
gebras and a ∈ A, a = a∗, there always exists an element b0 in B such
that ‖a+ b0‖ ≤ ‖a+ b‖, for all b ∈ B (see [17]). The element a + b0 is
minimal in the class [a] of the quotient space A/B. However, in the case
of A = K(H), the C∗-algebra of compact operators over a complex Hilbert
space H (which is not a von Neumann algebra), and B = D(K(H)) ⊂ K(H),
the C∗−subalgebra of diagonal operators respect some prefixed basis, there
is not always exist a minimal Hermitian compact operator in each class on
[Z] = {Z + D : such that D ∈ D(K(H))}. In [13] and [15] we exhibit
examples of this fact. The existence of a best approximant for a compact
Hermitian operator C is guaranteed for example whenH is finite dimensional
or C has finite rank [3].

We study in this paper the problem to find and characterize minimal
Hermitian vectors in X , where X can be the space of bounded linear, compact
or p−Schatten operators, with 1 ≤ p < ∞, over H. With this purpose, we
use B-J orthogonality as a tool to characterize minimal Hermitian operators.
In all cases, B = D(X ), that is the subspace of diagonal operators of X in
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any prefixed basis of X . If a Hermitian operator A ∈ X is minimal, that is

|||A||| ≤ |||A+D||| for all D ∈ D(X )

and ||| · ||| is the usual operator norm in each X , then Diag(A) is the diagonal
operator which minimizes the norm of A−Diag(A), or equivalently

|||A||| = dist(A,D(A)).

The problem about minimal operators is related with the study of minimal
length curves of the orbit manifold of a Hermitian compact operator T by a
particular unitary group, that is

OT = {uTu∗ : u is bounded, linear, unitary and u− 1 ∈ X}.

The existence of a (not necessarily unique) minimal element A allows the
description of minimal length curves of the manifold OT with initial velocity
x = iAb− biA by the parametrization

γ(t) = etiA b e−tiA, t ∈ [−1, 1].

For a deeper discussion of this topic we refer the reader to [17, 3, 15].
We briefly describe the contents of this paper. Section 2 contains basic

definitions, notation and some preliminary results. In section 3, we introduce
the concept of minimality for bounded linear operators acting on H and we
develop some general properties. In section 4, we present the concept of
minimal operators in p−Schatten ideals for 1 < p <∞ and we relate it with
Birkhoff-James orthogonality. In section 5 we focus on characterize minimal
compact and trace class operators using Gateaux ϕ−derivatives. In the last
section, we present and describe some particular results and cases for the
minimality of compact Hermitian operators in the spectral norm.

2. Preliminaries

Let (H, 〈, 〉) be a separable Hilbert space. As usual, B(H), U(H) and
K(H) denote the sets of bounded, unitary and compact operators on H. We
denote with ‖·‖ the usual operator norm in B(H). The symbol I stands for
the identity operator on B(H).

If an orthonormal basis {ei}∞i=1 of H is fixed we can consider matricial
representations of each A ∈ B(H). More precisely, we regard an operator
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A ∈ B(H) as an infinite matrix defined for each i, j ∈ N as Aij = 〈Aei, ej〉.
In this sense, ith-row of A and the jth-column are the vectors in `2 given by
and fj(A) = (Ai1, Ai2, ...) and cj(A) = (A1j, A2j, ...) , respectively.

If A is any subspace of B(H), we denote with D(A) the set of diagonal
operators with respect to the prefixed basis of H, that is

D(A) = {A ∈ A : 〈Aei, ej〉 = 0 , for all i 6= j} .

We define the operator Diag : B(H)→ D(B(H)), which essentially takes the
main diagonal of an operator A (i.e the elements of the form 〈Aei, ei〉i∈N) and
builds a diagonal operator in the prefixed basis of H. For a given sequence
{dn}n∈N we denote with Diag

(
(dn)n∈N

)
the diagonal (infinite) matrix with

(dn)n∈N in its diagonal and 0 elsewhere.
Given a subspace S of H, we denote as PS the orthogonal projection onto

S. For every subset A ⊂ B(H), we use the superscript h to note the subset of
Hermitian elements of A. A Hermitian element A ∈ B(H) is called positive
if 〈Ax, x〉 ≥ 0 for all x ∈ H and it is denoted by A ≥ 0. For an operator
A ∈ B(H) we use ker(A) to denote the kernel of A and it can be defined the

modulus of A as |A| = (A∗A)
1
2 .

For every compact operator A ∈ K(H), let s1(A), s2(A), · · · be the singu-
lar values of A, i.e. the eigenvalues of |A| in decreasing order (si(A) = λi(|A|),
for each i ∈ N) and repeated according to multiplicity. For p > 0, let

‖A‖p =

(
∞∑
i=1

si(A)p

) 1
p

= (tr|A|p)
1
p , (2.1)

where tr(·) is the trace functional, i.e.

tr(A) =
∞∑
j=1

〈Aej, ej〉. (2.2)

Note that this coincides with the usual definition of the trace if H is finite-
dimensional. We observe that the series (2.2) converges absolutely and it is
independent from the choice of basis. Equality (2.1) defines for 1 ≤ p < ∞
a norm on the ideal

Bp(H) = {A ∈ K(H) : ‖A‖p <∞},

called the p-Schatten class.
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Note that if H = Cn, for every n ∈ N, Bp(Cn) is the space of square n×n
complex matrices endowed with the ‖ · ‖p Schatten norm.

We summarize some of the most important properties of p-Schatten op-
erators in the following theorem.

Theorem 2.1. Let 1 ≤ p <∞, then

1. Bp(H) ⊆ K(H).

2. Bp(H) is an operator ideal in B(H) and a Banach space with the ‖ · ‖p
norm.

3. for every A ∈ Bp(H) and T ∈ B(H) we have the following inequalities:

‖A‖ ≤ ‖A‖p = ‖A∗‖p and ‖TA‖p ≤ ‖T‖‖A‖p.

4. Hölder inequality: for every A ∈ Bp(H) and T ∈ Bq(H) such that
1
p

+ 1
q

= 1

|tr(AT )| ≤ ‖AT‖1 ≤ ‖A‖p‖T‖q

For 1 < p < ∞, (Bp(H), ‖.‖p) is a uniformly convex space as a con-
sequence of the classical McCarthy-Clarkson inequality (see [30], Theorem
2.7). The ideal B1(H) is called the trace class. It is not reflexive and, in
particular, is not a uniformly convex space, because it contains D(B1(H)),
which is isomorphic to l1. Other relevant ideal is B2(H), the Hilbert-Schmidt
class, and it is a Hilbert space with the inner product 〈A,B〉HS := tr(B∗A).

Let Eij = ei⊗ ej, with {ei}∞i=1 the fixed orthonormal basis of H. Observe
that every Eij is a rank one operator for all i, j ∈ N and any A ∈ K(H) can

be written as A =
∞∑

i,j=1

aijEij, with aij = 〈Aei, ej〉. The set {Eij}∞i,j=1 is an

orthonormal countable basis of B2(H), since

〈Eij, Ekl〉HS = tr(E∗klEij) =

{
1 if i = k and j = l
0 in any other case.

The Schatten p-norms and the operator norm are special examples of
unitarily invariant norms, i.e. |||UXV ||| = |||X|||, for every pair of unitary
operators U, V . On the theory of norm ideals and their associated unitarily
invariant norms, a reference for this subject is [19].

In a normed space X , x ∈ X is a smooth point if there is a unique
hyperplane supporting the open ball B(0, ‖x‖) at x. We say that X is a
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smooth space if all its points in the unit sphere are smooth points. For
geometric and topological properties of smooth points in Banach spaces we
refer to [16] and references therein.

3. Generalities of minimal operators in X h/D(X )h

for every X closed subspace of B(H) and A ∈ X h we say that A is minimal
in the norm ||| · ||| of X if and only if

|||A||| ≤ |||A+D||| for all D ∈ D(X h), (3.1)

or equivalently, dist|||·|||(A,D(X h)) = |||A|||. This is equivalent to say that
the norm of A is the quotient norm of the class {A + D : D ∈ D(X h)} in
the quotient space X h/D(X h). In this case, we say that the diagonal of A,
Diag(A), is minimizant or is the best approximant of A in D(X h). In case of
existence, the best Hermitian (or real) diagonal aproximation of an operator
may not be unique. In this sense, another equivalent way to consider the
minimality problem is, given an operator A0 ∈ X h, find D0 ∈ D(X h) such
that

|||A0 +D0||| ≤ |||A0 +D||| for all D ∈ D(X h). (3.2)

In (3.2), A0 can be taken with zero diagonal. We will use both formulations
(3.1) or (3.2) whenever is convenient.

Remark 3.1. for every operator X ∈ X , if ||| · ||| is self-adjoint norm (i.e.
|||X∗||| = |||X|||)

|||Re(X)||| = 1

2
|||(X +X∗)||| ≤ |||X|||

it follows that A ∈ X h is minimal if and only if

|||A||| ≤ |||A+D|||, for all D ∈ D(X ). (3.3)

The next two Propositions are closely related with the Hahn-Banach the-
orem for Banach spaces and they link the ideal spaces Bp(H) and B(H)q with
1
p

+ 1
q

= 1. Both results are generalizations of the Banach Duality formula

found in [13] and we include proofs for the sake of completeness. To simplify,
here we use the notation B∞(H) = K(H).
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Proposition 3.2. Let A ∈ Bp(H), 1 ≤ p ≤ ∞ and consider the set

Nq =
{
Y ∈ Bq(H)h : ‖Y ‖q = 1, tr(Y D) = 0 for all D ∈ D(Bp(H))

}
,

with 1
p

+ 1
q

= 1. Then, there exists Y0 ∈ N such that

‖[A]‖Bp(H)h/D(Bp(H))h = inf
D∈D(Bp(H))

‖C +D‖p = tr(Y0A). (3.4)

For 1 < p <∞ this Y0 is unique and has the form

Y0 =
|A|p−1U∗

‖|A|p−1U∗‖q
,

where U is the partial isometry of the polar decomposition of A.

Proof. The existence is an immediate consequence from the Hahn-Banach
theorem that since D(Bp(H))h is a closed subspace of Bp(H)h for all 1 ≤
p ≤ ∞. Then there exists a functional ρ : K(H) → R such that ‖ρ‖ = 1,
ρ(D) = 0, for all D ∈ D(Bp(H)h), and

ρ(A) = inf
D∈D(Bp(H)h)

‖A+D‖p = dist(A,D(Bp(H)h)).

But, since any functional ρ can be written as ρ(.) = tr(Y0.), with Y0 ∈ Bq(H),
the result follows.

On the other hand, for 1 < p <∞ and using that 1
p

+ 1
q

= 1∥∥|A|p−1
∥∥q
q

= tr
(
|A|p−1

)q
= tr|A|p = ‖A‖pp

and so
∥∥|A|p−1

∥∥
q

= ‖A‖p/qp = ‖A‖p−1
p , this implies that |A|p−1 ∈ Bq(H). The

operator Y0 ∈ Nq from (3.5) can be defined as

Y0 =
|A|p−1U∗

‖|A|p−1U∗‖q

and the support functional is unique since Bp(H) with 1 < p < ∞ is a
uniformly convex space and every A ∈ Bp(H) is a smooth point (see [1]).
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Proposition 3.3 (Banach Duality Formula). Let A ∈ Bp(H)h with 1 ≤ p ≤
∞ and q ∈ R such that 1

p
+ 1

q
= 1. Then

inf
D∈D(Bp(H)h)

‖A+D‖p = max
Y ∈Nq

|tr(AY )| , (3.5)

Proof. Let A ∈ Bp(H)h with p, q as in the hypothesis. By Proposition 3.2,
there exists Y0 ∈ Nq such that

inf
D∈D(Bp(H)h)

‖A+D‖p = tr(Y0A).

Then

inf
D∈D(Bp(H)h)

‖A+D‖p = tr(Y0A) ≤ max
Y ∈Nq

|tr(AY )|max
Y ∈Nq

|tr ((A+D)Y )|

≤ ‖Y ‖q ‖A+D‖p = ‖A+D‖p ,

for every D ∈ D(Bp(H)h), where the last inequality is due to item (6) of
Theorem 2.1. Therefore, the equality (3.5) can be proved as a consequence
of this fact.

Propositions 3.2 (existence condition) and 3.3 can be generalized to any
closed subspace B of Bp(H), not only forD(Bp(H)), with the same arguments.

Proposition 3.4. If A is a minimal operator in Bp(H)h, 1 < p ≤ ∞, and
A ≥ 0 then A = 0. That is, any nonzero minimal Hermitian operator cannot
be positive semidefinite.

Proof. A ≥ 0 implies that A = U |A| = |A| and U = I. We separate the
proof in different cases.

• Case p = ∞: if A is minimal and positive then by the balanced spec-
trum property (Prop. 6 in [13]) λmax = −λmin = 0. Hence, A = 0.

• Case 1 < p <∞: A ≥ 0 and minimal implies by Theorem 4.5

tr(|A|p−1U∗) = tr(Ap−1) =
n∑
i=1

λi(A
p−1) = 0.

By continuous funcional calculus, for all 1 < p <∞

λi(A
p−1) = λi(A)p−1

with λi(A) ≥ 0 for all i. Then λi(A) = 0 for all i and A = 0.
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In the case p = 1, there are minimal positive operators also in a finite
dimensional context. We can see an example in Remark 4.10.

4. BJ-orthogonality in Bp(H) and minimality of Hermitian opera-
tors

Let Bp(H) be a p-Schatten ideal with p > 0. Using (1.1) the Birkhoff–
James orthogonality for every A,B ∈ Bp(H) is

A ⊥pBJ B if and only if ‖A‖p ≤ ‖A+ γB‖p for all γ ∈ C.

Let D(Bp(H)) be the closed subspace of diagonal operators of Bp(H), that
is

D(Bp(H)) =

{
D ∈ D(K(H)) :

∞∑
i=1

| 〈Dei, ei〉 |p <∞

}
.

By (1.2), given A ∈ Bp(H),

A⊥BJD(Bp(H))⇔ A ⊥pBJ D for all D ∈ D(Bp(H)). (4.1)

We focus in particular when p ≥ 1, where ‖ · ‖p is a norm.
According with (3.1) we say that A ∈ Bp(H)h is minimal in the p−

Schatten norm if and only if

‖A‖p ≤ ‖A+D‖p, for all D ∈ D(Bp(H))h.

The operator A is minimal in the class [A] = {A + D : D ∈ D(Bp(H))h} of
the quotient space Bp(H)h/D(Bp(H)h).

Applying Remark 3.1, we can combine minimality with BJ- orthogonality
as follows: given A ∈ Bp(H)h

A is minimal if and only if A ⊥BJ D(Bp(H)). (4.2)

Remark 4.1. Since every Bp(H) with 1 < p <∞ is a uniformly convex Banach
space and D(Bp(H)) is a proper closed vector subspace, there always exists
a unique minimal element A in its class, that is ‖A‖ = distp(A,D(Bp(H))h)
(Lemma 4 in [18]).
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4.1. Minimality in B2(H)
Here we consider the Hilbert-Schmidt class endowed with the inner prod-

uct 〈A,B〉HS = tr(B∗A), A,B ∈ B2(H) and its induced 2-norm, that is

‖A‖2 =
√
tr(A∗A). Then, we have the following minimality theorem.

Theorem 4.2. Let A ∈ B2(H), then the following conditions are equivalent:

1. ‖A‖2 = min
D∈D(B2(H))

‖A+D‖2.

2. Diag(A) = 0.

Proof. From the theory of approximation in Hilbert spaces and sinceD(B2(H))
is a closed subspace of B2(H), we obtain that the problem

min
D∈D(B2(H))

‖A+D‖2 (4.3)

has unique diagonal solution of the form

〈A,E11〉HS 0 · · · · · · · · ·
0 〈A,E22〉HS

. . . · · · ...
...

. . . . . . 0
...

... · · · 0 〈A,Enn〉HS

... · · · · · · · · · . . .


= −Diag(A), (4.4)

which is provided by the normal equations in the minimum least squares
problem (A + D ⊥ Eii for all i ∈ N, and {Eii}i∈N is a basis for D(B2(H))).
Thus,

min
D∈D(B2(H))

‖A+D‖2 = ‖A−Diag(A)‖2

and

dist2(A,D(B2(H)))2 = ‖A−Diag(A)‖2
2

= tr (A∗A− A∗Diag(A)−Diag(A)∗A+ Diag(A)∗Diag(A))

= ‖A‖2
2 − ‖Diag(A)‖2

2.

If ‖A‖2 = dist2(A,D(B2(H))), by the unicity of the solution of (4.3) A =
A−Diag(A), then Diag(A) = 0. On the other hand, if Diag(A) = 0, then

dist2(A,D(B2(H)))2 = ‖A‖2
2 − ‖Diag(A)‖2

2 = ‖A‖2
2.

Corollary 4.3. Let A ∈ B2(H)h, then A is a minimal operator if and only
if Diag(A) = 0.
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4.2. Bp(H) ideals as semi-inner product spaces and minimality

Lumer [29] and Giles [18] noticed that in any normed space (X , ‖ · ‖) it
can be can construct a semi-inner product, i.e., a mapping [·, ·] : X ×X → K
such that

(1) [x, x] = ‖x‖2,

(2) [αx+ βy, z] = α[x, z] + β[y, z],

(3) [x, γy] = γ[x, y],

(4) |[x, y]|2 ≤ ‖x‖2‖y‖2,

for all x, y, z ∈ X and all α, β, γ ∈ K. It is well known that in a normed
space there exists exactly one semi-inner product if and only if the space is
smooth (i.e., there is a unique support hyperplane at each point of the unit
surface). If X is an inner product space, the only semi inner product on X
is the inner product itself. More details can be found in [29, 18].

Proposition 4.4 ([12]). Let 1 < p < ∞ and we define for every A,B ∈
Bp(H)

[B,A] = ‖A‖2−p
p tr

(
|A|p−1U∗B

)
, (4.5)

where U |A| is the polar decomposition of A. Then,
(
Bp(H), [·, ·]

)
is a con-

tinuous semi-inner product space (in the Lumer sense) and the following
statements are equivalent:

(i) A ⊥pBJ B.

(ii) [B,A] = 0.

Observe that this semi-inner product does not fulfill the conjugate prop-
erty, since in general [B,A] 6= [A,B].

Theorem 4.5. Let 1 < p < ∞, {ei}i∈N be the fixed basis of H and A ∈
Bp(H) with the polar decomposition A = U |A|. The following conditions are
equivalent:

1. A ⊥pBJ D(Bp(H)).

2. [D,A] = 0 for all D ∈ D(Bp(H)).
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3. tr(|A|p−1U∗D) = 0 for all D ∈ D(Bp(H)).

4. tr(|A|p−1U∗Eii) = 0, for all Eii = Diag(ei), i ∈ N.

5. (|A|p−1U∗)ii = 0 for all i ∈ N.

6. (U |A|p−1)ii = 0 for all i ∈ N.

Proof. The equivalence betwenn items (1), (2) and (3) are direct consequence
of Prop. 4.4.

(3)⇒(4) is trivial since each Eii ∈ D(Bp(H)) for all i ∈ N.
(4)⇒(3) occurs since any D ∈ D(Bp(H)) can be written as
D =

∑∞
i=1 diEii, with di = 〈Dei, ei〉 such that

∑∞
i=1 |di|p <∞ and

tr(|A|p−1U∗D) = lim
N→∞

tr

(
|A|p−1U∗

(
N∑
i=1

diEii

))

= lim
N→∞

N∑
i=1

ditr
(
|A|p−1U∗Eii

)
= 0.

(4)⇒(5): each Eii can be written as ei ⊗ ei. Then

0 = tr(|A|p−1U∗Eii) =
∞∑
j=1

〈
|A|p−1U∗Eiiej, ej

〉
=
〈
|A|p−1U∗ei, ei

〉
= (|A|p−1U∗)ii

for all i ∈ N. The converse (5)⇒(4) is obvious.
(5)⇔(6): Using continuous funcional calculus for |A| and f(z) = zp−1(

|A|p−1
)∗

= f(|A|)∗ = f(|A|) = (|A|∗)p−1 = |A|p−1.

Then |A|p−1 is Hermitian and for all i ∈ N

0 = (|A|p−1U∗)ii = (|A|p−1U∗)∗ii = (U |A|p−1)ii.

Corollary 4.6. Let A ∈ Bp(H)h, with 2 ≤ p <∞. Then

1. A is a minimal operator in the p−Schatten norm if and only if

Diag(A|A|p−2) = Diag(|A|p−2A) = 0.
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2. For every even integer p, A is minimal if and only if Diag(Ap−1) = 0.
3. If A is minimal in the p−Schatten norm, then

∞∑
i=1

sgn(λi(A))|λi(A)|p−1 = 0. (4.6)

Proof. (1): Let A ∈ Bp(H)h, p ≥ 2, be a minimal operator. If U |A| is the
polar decomposition of A, then by Theorem 4.5

(U |A|p−1)ii = (U |A||A|p−2)ii = (A|A|p−2)ii = 0 for all i ∈ N.

Item (2) is due to Lemma 4.3 in [4], since A is minimal if and only if
tr(Ap−1D) = 0 for all D ∈ D(Bp(H)h). In addition, observe that f(t) = tp−1

is well defined for compact Hermitian (non positive) operators only if p − 1
is not an even number.

(3): condition Diag(|A|p−2A) = 0 in particular implies that tr(|A|p−2A) =
0. Also, by hypothesis A is diagonalizable, then there exists V a unitary
operator in B(H) such that A = V ∗Diag(λ(A))V . Therefore,

tr
(
|A|p−2A

)
= tr

(
V ∗|Diag(λ(A))|p−2 Diag(λ(A))V

)
= tr

(
|Diag(λ(A))|p−2 Diag(λ(A))

)
=

∞∑
i=1

sgn(λi(A))|λi(A)|p−1 = 0.

Condition (3) in Corollary 4.6 gives a necessary condition over the eigen-
values of an operator to be minimal (not sufficient), anagously to the balanced
spectrum property for minimal Hermitian compact operators in the spectral
norm.

Remark 4.7 (Some examples of minimal operators). 1. Bp(C2) and p ≥ 2:
by (4.6) any non zero minimal matrix in the p− Schatten norm A =(
a c
c d

)
fulfills that λ2(A) = −λ1(A) for all p ≥ 2. Then,

‖A‖p = (|λ1(A)|p + | − λ1(A)|p)1/p = 21/p|λ1(A)|
and the characteristic polynomial of A is p(λ) = λ2 − (|c|2 + a2) since
has no lineal term (i.e, d = −a). Therefore,

‖A‖p = 21/p(|c|2 + a2)1/2

is minimum when a = 0 and A has zero diagonal.
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2. B4(C3): if A =

a 1 0
1 b 1
0 1 c

 is the minimal matrix in its class, then

Diag(A) = 0. Indeed, the matrix A0 = A− Diag(A) fulfills that A3
0 =

2A0 and clearly Diag(A3
0) = 0, then A0 is minimal.

By a similar argument and for every separable H, every tridiagonal
Hermitian operator in B4(H) with zero diagonal is minimal in its class.

3. However, not every Hermitian operator with zero diagonal is minimal

in Bp(H). For example, when p = 4, H = C3, and A =

0 a b
a 0 c

b c 0

,

with a, b, c 6= 0 can not be the minimal matrix in its class, since

Diag(A3) = (acb+ acb)I 6= 0.

But also observe that if any of a, b or c is 0, then A is a minimal matrix.
4. Bp(H)h, 1 < p < ∞: Let A ∈ Bp(H)h be a block-diagonal operator,

that is

A =


A1 0 0 · · ·
0 A2 0 · · ·
0 0 A3 · · ·
...

...
...

. . .

 ,
with Ai = PSiAPSi ∈ Bp(H)h

and ⊕∞i=1 Si = H ∀ i ∈ N.

Then, there exists a unique Di ∈ D(Bp(H)h) such that Ai + Di is
minimal in the p−Schatten norm for all i ∈ N. Therefore the block
diagonal

A+D0 =


A1 +D1 0 0 · · ·

0 A2 +D2 0 · · ·
0 0 A3 +D3 · · ·
...

...
...

. . .

 ,

is a minimal operator since

‖A+D0‖pp =
∞∑
i=1

‖Ai +Di‖pp (4.7)

≤
∞∑
i=1

‖Ai +D′i‖pp =

∥∥∥∥∥∥∥∥∥


A1 +D′1 0 0 · · ·

0 A2 +D′2 0 · · ·
0 0 A3 +D′3 · · ·
...

...
...

. . .


∥∥∥∥∥∥∥∥∥
p

p
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for all D′i ∈ D(Bp(H)). The first equality in (4.7) is a property of
pinching operators [7].

Remark 4.8 (Considerations about Theorem 4.5 and Corollary 4.6). With
the same notation and hypothesis of the mentioned results:

1. These results generalize for all p ∈ (1,∞) Lemma 4.3 in [4] about
minimal (lifting) operators in iBp(H)h, the subspace of anti-Hermitian
operators in Bp(H).

2. Observe that for p = 2, A⊥BJD(Bp(H)) if and only if Aii = (A∗)ii =
(|A|U∗)ii = 0 for all i ∈ N, which equivalent to the characterization of
minimal operators found in Theorem 4.2 using least squares.

3. The minimality condition in Bp(H)h

[Eii, A] = 0 for all i ∈ N

is equivalent to the normal equations for the solution of the least squares
problem in a non-Hilbert space context.

4. Any minimal operator A in Bp(H), with p ∈ (1,∞), fulfills [D,A] = 0
for all D ∈ D(Bp(H)). But in general [A,D] 6= 0, since

[A,D] = 0 for all D ∈ D(Bp(H))⇔ ‖D‖2−p
p tr

(
|D|p−1V ∗A

)
= 0

∞∑
k=1

|dk|p−1eiθkAii = 0 for all {dn}n∈N ∈ `p ⇔ Diag(A) = 0

Here V = Diag
(
{e−iθk}k∈N

)
is the diagonal unitary operator of the

polar decomposition of D. For example when p = 2 or item (3) in
Remark 4.7, the minimal operator A satisfies that Diag(A) = 0, then
[D,A] = 0 and [A,D] = 0.

The case p = 1 is treated more generally in the next section, but when
H = Cn, Theorem 2.1 in [10] can be used in order to have the following
result.

Proposition 4.9. for every matrix A with polar decomposition A = U |A| in
B1(Cn) such that tr(U∗D) = 0 for all D ∈ D(Mn(C)), then A is a minimal
matrix in the trace norm. The converse is true if A is also invertible.

Condition tr(U∗D) = 0 for all D ∈ D(Mn(C)) implies that the partial
isometry U of the polar decomposition of A has null diagonal (U ∈ N1).
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Remark 4.10 (Minimal matrices in the trace norm). 1. Minimal matrices
in the 1−Schatten norm may be not unique, for example, if H = C2

and U is a unitary matrix of 2× 2, then

tr(U∗D) = 0 for all D ∈ D(C2×2)⇔ U =

(
0 eiθ

eiβ 0

)
, θ, β ∈ [0, 2π).

Therefore, any A = A∗ minimal (non-diagonal) has an unitary U for

its polar decomposition as before and U∗A = AU ≥ 0. If A =

(
a c
c d

)
with a, d ∈ R and c ∈ C6=0, then(

0 e−iθ

e−iβ 0

)(
a c
c d

)
=

(
a c
c d

)(
0 eiβ

eiθ 0

)
= |A|

⇔
(
ce−iθ de−iθ

ae−iβ ce−iβ

)
=

(
ceiθ aeiβ

deiθ ceiβ

)
= |A|.

Simple calculations show that θ = − arg(c) = −β, a = d,

A =

(
a c
c a

)
with |a| ≤ |c| and ‖A‖1 = |a+ |c||+ |a− |c|| = 2|c|.

Observe that we characterized all minimal Hermitian matrices in C2×2

for the 1−Schatten norm in terms of c and a. Moreover, condition
|a| ≤ |c| indicates that there is not unicity of the minimizant diagonal
(in fact, there are infinite, all scalar multiples of the identity, with a
scalar with modulus less or equal than |c|). For example, if c = 1,

every A =

(
a 1
1 a

)
with |a| ≤ 1 is a minimal matrix with the trace

norm |a+ 1|+ |a− 1| = 2.
Also, there are minimal matrices that do not have necessary a zero
diagonal. But in all cases, the minimizant diagonal is a scalar multiple
of the identity, therefore

dist1(A,D(C2×2)) = dist1(A,CI).

2. Any matrix A =

a d 0

d b 0
0 0 c

 with d 6= 0 fixed is a block diagonal matrix

and

‖A‖1 =

∥∥∥∥(a d

d b

)∥∥∥∥
1

+ |c|
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and it is minimal in the 1−Schatten norm if and only if c = 0, a = b
and |a| ≤ |d|. One can check that a partial isometry of the polar
decomposition that satisfies Prop. 4.9 is

U =

 0 eiθ1 0
eiθ2 0 0
0 0 0

 , with θ1 = −θ2,

it is not unitary (ker(U) = ker(A) = span{e3}) and it can not be
extended to an unitary with zero diagonal. There are infinite minimal
matrices in the class of A and we observe that there are minimizant
diagonals which are not a scalar multiple of the identity matrix.

3. Recall that the partial isometry of the polar decomposition of any ma-
trix may not be unique but a minimal matrix must have any partial
isometry of its polar decomposition with zero diagonal. Indeed, con-

sider the case B1(C3) and the matrix A =

a 1 1
1 b 1
1 1 c

, with a, b, c ∈ R

to be determined. Its polar decomposition has a unitary operator and
every unitary U to fulfill the zero diagonal condition is given by 0 eiθ1 0

0 0 eiθ2

eiθ3 0 0

 or

 0 0 eiθ1

eiθ2 0 0
0 eiθ3 0

 (4.8)

Then, A =

a 1 1
1 b 1
1 1 c

 is a minimal matrix in B1(C3) if A = U |A| with

U as in (4.8). Without loss of generality, we choose the first option.
Then,

AU = U∗|A| ≥ 0⇔

 eiθ3 aeiθ1 eiθ2

eiθ3 eiθ1 beiθ2

ceiθ3 eiθ1 eiθ2

 =

 e−iθ3 e−iθ3 ce−iθ3

ae−iθ1 e−iθ1 e−iθ1

e−iθ2 be−iθ2 e−iθ2

 ≥ 0

⇔ θk = 0 for k = 1, 2, 3 and a = b = c = 1.

Therefore, A =

1 1 1
1 1 1
1 1 1

 = (1, 1, 1)⊗ (1, 1, 1) is a minimal matrix in

its class and we observe that is semi-definite positive of rank one. The
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unitary U chosen to the condition was a permutation of the identity
(in fact, A = I|A| but I does not fulfill the minimality condition). In
this case

inf
D∈D(B1(C3))

‖A+D‖1 = ‖A‖1 = 3

and, similar as the previous example,

dist1(A,D(C3×3)) = dist1(A,CI).

5. Gateaux derivative and minimality of Hermitian operators in
B1(H) and K(H)

In this section we focus on the study of the minimal Hermitian operators
on the particular cases B1(H) and K(H), which are not included in the study
made previously. We follow central ideas from [27], [26], [1] and [24]. There
are also more recent related work (see for instance [37] and [34]).

Definition 5.1. Let (X , ‖·‖) be an arbitrary Banach space. The ϕ−Gateaux
derivative of the norm at the point x in the y−direction is

Dϕ,x(y) = lim
t→0+

‖x+ teiϕy‖ − ‖x‖
t

(5.1)

The case ϕ = 0 corresponds to the usual Gateaux derivative of the norm
at the point x. In this case, the norm ‖ · ‖ is Gateaux differentiable at a
nonzero x ∈ X if

lim
t→0+

‖x+ ty‖ − ‖x‖
t

= ReDx(y) for all y ∈ X , (5.2)

where Dx is the unique functional in X ∗ (dual space of X ) such that Dx(x) =
‖x‖ and ‖Dx‖ = 1. This condition is equivalent to say that x is a smooth
point on the sphere S(0, ‖x‖) ⊂ X . Relative to smooth points we collect the
following facts.

Remark 5.2 (Smooth points). 1. For 1 < p < ∞, every A ∈ Bp(H), A 6=
0, is a smooth point, since Bp(H) is a uniformly convex space. In this
case

DA(B) = tr

(
|A|p−1UB∗

‖A‖p−1
p

)
=

1

‖A‖p
[B,A],

where A = U |A| is the polar decomposition of A and [·, ·] is the semi-
inner product defined in (4.5).
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2. For p = 1, A ∈ B1(H), A 6= 0, is a smooth point if and only if A or A∗

are one-to-one. In the case that A is one-to-one,

DA(B) = tr (UB∗) , (5.3)

where A = U |A| is the polar decomposition of A.
3. In K(H), A ∈ K(H) is a smooth point if and only if there exists a

unique norm 1 vector v (up to multiplication by constants of modulus
one) such that ‖A‖ = ‖Av‖. in this case

DA(B) = tr

(
v ⊗ Av
‖A‖

B

)
=

〈
Bv,

Av

‖A‖

〉
. (5.4)

The next result is similar to Prop. 4.9 in an infinite dimensional context.

Proposition 5.3. Let A ∈ B1(H) be a smooth point. Then, the following
statements are equivalent:

1. A⊥BJD(B1(H)).
2. DA(D) = tr (U∗D) = 0 for all D ∈ D(B1(H)) if A is one-to-one (or
tr (UD) = 0 if A∗ is one-to-one).

3. U∗ii = 0 for all i ∈ N, i.e. Diag(U∗) = 0 (or Diag(U) = 0 if A∗ is
one-to-one).

Here U is the partial isometry of the polar decomposition of A.

Proof. Without loss of generality, we assume A is one-to-one.
(1)⇔ (2) By [Lemma 1, [27]] A⊥BJ1D ⇔ DA(D) = 0. Using this fact for

all D ∈ D(B1(H)) and formula in (5.3) we obtain the desired result.
(2)⇔ (3) This equivalence follows by the same argument as in the proof

of (4)⇔ (5) from Theorem 4.5.

Corollary 5.4. Let A ∈ B1(H)h be a smooth point. Then, the following
statements are equivalent:

1. A is minimal in B1(H).
2. tr (UD) = 0 for all D ∈ D(B1(H)).
3. Diag(U) = 0.

Proof. Suposse A is minimal in B1(H), then by (4.2) it is equivalent to
A⊥BJD(B1(H)). By Proposition 5.3,

DA(D) = tr(U∗D) = tr(UD) = 0 for all D ∈ D(B1(H))

since A is Hermitian and a smooth point.
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We obtain an analogous of Prop. 5.3 for smooth points in K(H).

Proposition 5.5. Let A ∈ K(H) a smooth point and v ∈ H be the unique
(up to multiplication by scalars of modulus one) unitary vector such that
‖A‖ = ‖Av‖. Then, the following statements are equivalent:

1. A⊥BJD(K(H)).

2. DA(D) = tr
(
v⊗Av
‖A‖ D

)
=
〈
Dv, Av‖A‖

〉
= 0 for all D ∈ D(K(H)) (in fact,

for every D ∈ D(B(H))).

Proof. By Lemma 1 in [27] A⊥BJD ⇔ DA(D) = 0. Using this fact for all
D ∈ D(K(H)) and formula in (5.4) we obtain the desired result.

By the mentioned balanced spectrum property, every A ∈ K(H)h minimal
fulfills that ±‖A‖ is in the (discrete) spectrum. Then, there exist v, w linearly
independent unitary eigenvectors of ‖A‖ and −‖A‖, respectively. Therefore,
a minimal operator A in K(H)h can not be smooth. For non smooth points
in a normed space X , Keckic proved in [Theorem 1.4,[26]] that for every pair
x, y ∈ X

x⊥BJy ⇔ inf
ϕ
Dϕ,x(y) ≥ 0. (5.5)

Also, he found explicit formulas for the Gateaux derivative for non smooth
points on B1(H) and K(H) ((5.6) and (5.8), resp.)

Now we characterize minimal Hermitian operators in B1(H) and K(H),
respectively.

Theorem 5.6. Let A ∈ B1(H)h. Then, the following statements are equiva-
lent:

1. A is minimal.

2. |tr (U∗D)| ≤ ‖PDP‖1 for all D ∈ D(B1(H))h, where A = U |A| is the
polar decomposition of A and P = Pker(A).

Proof. A ∈ B1(H)h is minimal if and only if A⊥BJD for all D ∈ D(B1(H))h.
Then, by (5.5) it is equivalent to

inf
ϕ
Dϕ,A(D) ≥ 0 for all D ∈ D(B1(H))h.
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The explicit formula found in [26] of the Gateaux derivative for A,B ∈ B1(H)
is

lim
t→0+

‖A+ tD‖1 − ‖A‖1

t
= Re (tr(U∗D)) + ‖QDP‖1, (5.6)

where A = U |A| is the polar decomposition of A, P = Pker(A) and Q =
Pker(A∗). Replacing by A Hermitian and B = eiϕD

inf
ϕ
Dϕ,A(D) = inf

ϕ

(
Re
(
eiϕtr(U∗D)

))
+ ‖PDP‖1.

Therefore, infϕDϕ,A(D) ≥ 0 if and only if |tr (U∗D)| ≤ ‖PDP‖1 for all
D ∈ D(B1(H))h, since

inf
ϕ

(
Re
(
eiϕtr(U∗D)

))
= Re

(
e−i arg(tr(U∗D))tr(U∗D)

)
= Re (|tr(U∗D)|)

Example 5.7. Suppose A ∈ B1(H)h and S is a finite dimension subspace of

H such that A can be written by block notation as A =

[
AS 0
0 0

]
S
S⊥, where

AS = PSAPS is the compression of A by S. Then, simple computations

show that P = PKer(A) =

[
0 0
0 I

]
and a partial isometry U for the polar

decomposition is U =

[
US 0
0 0

]
. Therefore, by Theorem 5.6 A is minimal if

and only if |tr(U∗D)| ≤ ‖PDP‖1 for all D ∈ D(B1(H)). In particular, if
S = span{ei : 1 ≤ i ≤ n} then

|Uii| = |tr(U∗Eii)| ≤ ‖PEiiP‖1 =

{
0 if i ≤ n
1 if i ≥ n

. Thus Diag(U) =

[
I 0
0 0

]
Theorem 5.8. Let A ∈ K(H)h. Then, the following statements are equiva-
lent:

1. A is minimal.

2. inf
0≤ϕ<2π

max
v∈MA,
‖v‖=1

Re (eiϕ 〈U∗Dv, v〉) ≥ 0 for all D ∈ D(K(H)h), where A =

U |A| is the polar decomposition of A and MA is the subspace where the
operator A attains its norm (MA 6= ∅).

3. There exists v ∈MA such that 〈Dv,Av〉 = 0 for all D ∈ D(K(H)h).
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4. There exists v ∈MA such that for each i ∈ N

vi = 0 or (Av)i = fi(A)tv = 0.

5. There exists v ∈MA such that 〈Dv,Av〉 = 0 for all D ∈ D(B(H)h).

Proof. (1)⇔(2): Analogously to the case B1(H), an operator A ∈ K(H)h is
minimal if and only if

inf
ϕ
Dϕ,A(D) ≥ 0 for all D ∈ D(K(H)h).

In this case, the explicit formula found in [26] of the Gateaux derivative for
A,B ∈ K(H) is

lim
t→0+

‖A+ tB‖ − ‖A‖
t

= max
v∈Φ,
‖v‖=1

Re 〈U∗Bv, v〉 . (5.7)

where A = U |A| is the polar decomposition of A and Φ is the characteristic
subspace of |A| respect to its eigenvalue s1. Replacing by A Hermitian and
B = eiϕD

inf
ϕ
Dϕ,A(D) = inf

0≤ϕ<2π
max
v∈MA,
‖v‖=1

Re
(
eiϕ 〈U∗Dv, v〉

)
.

Therefore, A is minimal if and only if

inf
0≤ϕ<2π

max
v∈MA,
‖v‖=1

Re
(
eiϕ 〈U∗Dv, v〉

)
≥ 0 for all D ∈ D(K(H)h)

.
Equivalence (2)⇔(3) is due to Corollary 2.8 in [26] for A ∈ K(H)h fixed

and every B = D ∈ D(K(H)h). Also, (1)⇔ (3) can be obtained by Corollary
2.2.1 in [33].

For item (2) observe that the set MA cannot be empty since H is reflexive
and A ∈ K(H).

(3) ⇔ (4): statement (3) is equivalent to say that there exists v ∈ MA

such that

〈Eiiv,Av〉 = 〈viei, Av〉 = vi(Av)i = 0 for all i ∈ N
⇔ vi = 0 ∨ (Av)i = fi(A)tv = 0 for all i ∈ N.
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(3) ⇔ (5): it is evident since condition (3) is equivalent to

〈Eiiv, Av〉 = 0 for all i ∈ N

and every D ∈ D(B(H)) can be written as
∞∑
i=1

diEii with di ∈ C, |di| ≤ M

for some M > 0.

Observe that equivalence between statements (1) and (5) in Theorem 5.8
gives a characterization for minimal Hermitian operators with bounded non-
compact diagonal. It is an improvement from Lemma 6.1 in [14]. Aditionally,
note that the vector of condition (3) in the same theorem cannot be an
eigenvector of the minimal operator A and fulfills that

‖(A+D)v‖2 = ‖Av‖2 + ‖Dv‖2

for all D ∈ D(B(H)).

Remark 5.9 (Minimal operators with non compact diagonal). There are op-
erators A ∈ K(H)h such that dist(A,D(K(H))h) is attained by bounded
diagonals that are not compact. One relevant example is the following: let
Zr be the operator defined matricially as

Zr =


0 rγ rγ2 rγ3 · · ·
rγ d2 γ γ2 · · ·
rγ2 γ d3 γ2 · · ·
rγ3 γ2 γ2 d4

. . .
...

...
...

...
. . .

 , with


γ ∈ (0, 1).

dn = −1−γn−2

1−γ −
γn

1−γ2 , n ≥ 2.

r =

∥∥∥Z[1]
r

∥∥∥√
γ2

1−γ2

,

where Z
[1]
r is the operator defined by the matrix of Zr with zeros in the first

column and row. Then, in [13] we proved that Zr is a minimal operator with
Zr−Diag(Zr) ∈ B2(H)h ⊂ K(H)h and Diag(Zr) is the (uniquely determined)
diagonal minimizant, but it is not compact, since lim

n→∞
dn 6= 0. Moreover,

‖Zr‖ = ‖c1(Zr)‖ = ‖Zre1‖. Also,

〈De1, Zre1〉 = 〈D11e1, c1(Zr)〉 = 0 for all D ∈ D(B(H)h),

which means that Zr fulfills items (3) and (4) of Theorem 5.8 for v = e1.
Curiously, we observe that by Corollary 4.3 Zr − Diag(Zr) is indeed a

minimal operator in the quotient space B2(H)h/D(B2(H))h.
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6. Cases of minimal Hermitian operators in K(H)

Let Mn(C) be the vector space of complex n×n matrices. In this context,
we say M ∈Mn(C)h is minimal in the spectral norm if

‖M‖ ≤ ‖M +D‖

for all D real diagonal n×n matrix (D ∈ D(Mn(C)h)). Several characteriza-
tions and studies of geometric consequences of minimal Hermitian matrices
in the spectral norm can be found in [5], [6] and [28]. We continue with
some examples of minimal Hermitian matrices and compact operators in the
spectral norm.

Theorem 6.1. Let C ∈ K(H) such that C is a block-diagonal operator, that
is

C =


C1 0 0 · · ·
0 C2 0 · · ·
0 0 C3 · · ·
...

...
...

. . .

 ,

where Ci ∈ Mh
ni

(C), for each i ∈ N. Then, there exists D ∈ D(K(H)) such
that C +D is minimal.

Proof. For each i ∈ N there exists a minimizing Di ∈ D(Mh
ni

(C)). That is

‖Ci +Di‖ ≤ ‖Ci +D′i‖ , for all D′i ∈ D(Mh
ni

(C)).

We claim that the block-diagonal operator defined as

D =


D1 0 0 · · ·
0 D2 0 · · ·
0 0 D3 · · ·
...

...
...

. . .


is a minimizant for C. Indeed, it is trivial to observe that is diagonal since
each block Di is a diagonal matrix. It remains to prove compacity and
minimality.
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• Minimality: Let D′ ∈ D(K(H)). It can be written in the same block
notation of C as

D′ =


D′1 0 0 · · ·
0 D′2 0 · · ·
0 0 D′3 · · ·
...

...
...

. . .

 , with D′i ∈ D(Mh
ni

(C)), ni ∈ N.

Then,

‖C +D′‖ = sup
i∈N
‖Ci +D′i‖ ≥ sup

i∈N
‖Ci +Di‖ = ‖C +D‖ .

• Compacity: by minimality, ‖Ci +Di‖ ≤ ‖Ci‖ for each i ∈ N, then

‖Di‖ ≤ ‖Ci +Di‖+ ‖Ci‖ ≤ 2 ‖Ci‖ → 0,

when i → ∞ (since C is compact). Therefore, lim
i→∞

Di = 0 and D is

also compact.

Remark 6.2. In Theorem 6.1 the operator norm of C +D is sup{‖Ci +Di‖ :
i ∈ N}, which is clearly attained at any i0 ∈ N, since lim

i→∞
‖Ci +Di‖ = 0.

Lemma 6.3. (due to Prof. Varela) Any tridiagonal Hermitian matrix M of
n× n with zero diagonal is minimal in the spectral norm.

Proof. Let M ∈Mh
n (C) be a tridiagonal matrix defined as a polar way, that

is,

M =


0 a1e

it1 0 · · · 0
a1e
−it1 0 a2e

it2 · · · 0

0 a2e
it2 0 a3e

it3
...

...
...

...
. . .

...
0 0 · · · an−1e

−itn−1 0

 , (6.1)

with ai, ti ∈ R for all 1 ≤ i ≤ n, and consider a unitary matrix U , given by

U =


1 0 0 ... 0
0 eit1+iπ

2 0 · · · 0
0 0 ei(t1+t2)+iπ · · · 0
...

...
...

. . .
...

0 0 0 · · · e[i(t1+...+tn−1)+n−1
2
iπ]

 .
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Then,

UMU∗ =


0 ia1 0 · · · 0
−ia1 0 ia2 · · · 0

0 −ia2 0 · · · ...
...

...
...

. . . ian−1

0 0 · · · −ian−1 0


with Re(UMUij) = 0 for all i, j ≤ n and Diag(M ′) = 0. Thus, by Theorem
8 in [28], M ′ is minimal. Therefore,

‖M‖ = ‖U∗M ′U‖ = ‖M ′‖ ≤ ‖M ′ +D‖ = ‖M + U∗DU‖ = ‖M +D‖ ,

where last equality is due to U is diagonal. Then,

‖M‖ ≤ ‖M +D‖ for all D diagonal.

Proposition 6.4 (Unicity). Let M be a tridiagonal Hermitian matrix as
(6.1) such that ai 6= 0 for all 1 ≤ i ≤ n. Then, 0 is the unique minimizing
real diagonal for M .

Proof. Let M as in the statement and λ = ‖M‖. By proposition 6.3 M is
minimal and ±λ ∈ σ(M). Moreover, simple calculations show that if x =
(x1, x2, ..., xn) is an eigenvector associated to λ, then y = (−x1, x2, ..., (−1)nxn)
is an eigenvector associated to −λ (and this holds for all µ ∈ σ(M), so every
eigenspace of M has multiplicity one). In particular, x1 6= 0 implies x 6= 0
and yk = (−1)kxk 6= 0 for all 1 < k ≤ n. Then |yk|2 = |xk|2 for each
1 ≤ k ≤ n and therefore,

x ◦ x = (|x1|2, |x2|2, ..., |xn|2) = y ◦ y,

By [Theorem 10,[28]] M has only one minimizing real diagonal D, which is
D = 0.

Finally, we use Lemma 6.3 to state the minimality of tridiagonal compact
operators, since each matrixM of n×n can be seen as a finite rank operator in
K(H), that is M = P{e1,...,en}MP{e1,...,en}, with Mij = 〈Mei, ej〉 for each i, j ∈
N and P{e1,...,en} is the orthogonal projection to the subspace span{e1, ..., en}.
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Proposition 6.5. If C ∈ K(H) is a minimal Hermitian tridiagonal operator
with Ci(i+1) 6= 0 for all i ∈ N. Then, the following statements are equivalent:

1. C is a minimal operator in K(H).
2. Diag(C) = 0.

Proof. (1)⇒(2): Let {Cn}n∈N be a Hermitian tridiagonal matrix sequence
such that

lim
n→∞

Cn = C y Diag(Cn) = 0.

Each Cn ∈ K(H), since rank(Cn) < ∞, and by Proposition 6.3 all are
minimal. Then

‖C‖ =
∥∥∥ lim
n→∞

Cn

∥∥∥ = lim
n→∞

‖Cn‖

≤ lim
n→∞

‖Cn +D‖ =
∥∥∥ lim
n→∞

Cn +D
∥∥∥ = ‖C +D‖

for each D ∈ D(K(H)). Then, it is evident that Diag(C) = 0.
(2)⇒(1): If C is a tridiagonal operator with zero diagonal, then PnCPn

is a tridiagonal matrix with zero diagonal for all n ∈ N (Pn = P{e1,...,en}).
Then each PnCPn is a minimal matrix in Mn(C)h. On the other hand, every
D ∈ D(K(H)h) can be obtained as lim

n→∞
Dn, with Dn ∈ D(Mn(C)h) for all

n ∈ N (and ‖Dn‖ → 0 when n→∞). Then, for all D ∈ D(K(H)h)

‖C‖ = lim
n→∞

‖PnCPn‖ ≤ lim
n→∞

‖PnCPn +Dn‖ = ‖C +D‖.

Therefore, C is minimal.

Observe that implication (1)⇒(2) holds without the requirement Ci(i+1) 6=
0.
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Orthogonality and parallelism of operators on various Banach spaces, J.
Aust. Math. Soc. 106 (2019), no. 2, 160–183.

[13] T., Bottazzi and A. Varela, Best approximation by diagonal compact
operators. Linear Algebra Appl. 439 (2013), no. 10, 3044–3056.

[14] T. Bottazzi, T. and A. Varela, Geodesic neighborhoods in unitary orbits
of self-adjoint operators of K+C. Submitted to Differential Geom. Appl.
on April 2019.

[15] T. Bottazzi, T. and A. Varela, Minimal length curves in unitary orbits
of a Hermitian compact operator. Differential Geom. Appl. 45 (2016),
1–22.

[16] J. Diestel, Geometry of Banach spaces, in “Lecture Notes in Mathemat-
ics”. Springer-Verlag 485 (1975), Berlin.

[17] C. Durán, L. Mata-Lorenzo and L. Recht, Metric geometry in homoge-
neous spaces of the unitary group of a C∗-algebra. I. Minimal curves.
Adv. Math. 184 (2004), no. 2, 342–366.

[18] J. R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math.
Soc. 129 (1967), 436–446.
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