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In the present paper, we study the unitary orbit of a compact Hermitian diagonal 
operator with spectral multiplicity one under the action of the unitary group UK+C

of the unitization of the compact operators K(H) +C, or equivalently, the quotient 
UK+C/UD(K+C). We relate this and the action of different unitary subgroups to 
describe metric geodesics (using a natural distance) which join end points. As a 
consequence we obtain a local Hopf-Rinow theorem. We also explore cases about 
the uniqueness of short curves and prove that there exist some of these that cannot 
be parameterized using minimal anti-Hermitian operators of K(H) + C.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Let A be a unital C∗-algebra, B a sub-C∗-algebra of A which is a W∗-algebra, and UA, UB its respective 
unitary groups. Theorem II of [7] or Theorem I-2 of [8] (and the Remark that follows it) imply that for 
every element ρ ∈ UA/UB, and every tangent vector x ∈ Tρ (UA/UB), there exists a minimal lift Z ∈ Aah of 
x (‖Z‖ � ‖Z + D‖ for all D ∈ B) such that the curves

γ(t) = LetZ · ρ (1.1)
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are all the possible short curves (under a natural distance) starting at ρ with fixed initial velocity x, where 
Lu · ρ denotes the left action of u ∈ UA on ρ. In this context, we will call this Z a minimal operator.

Moreover in [8] local and global Hopf-Rinow theorems were proved in this context with additional hy-
pothesis on the unitary groups involved.

If the assumption of B being a von Neumann algebra is relaxed, Theorem I of [7] proves that every 
minimal lift Z still produces a short curve if B is only required to be a C∗-algebra. Nevertheless, in this 
case such a Z may not exist for every tangent vector x (see for example the discussion following Proposition 
18 in [3] or the properties of Z2 defined in (4.2) in this paper). Therefore, if A and B are C∗-algebras the 
parameterization of minimal curves with arbitrary initial velocity is not known in general nor the existence 
of geodesic neighborhoods. The main objective of this work is the study of short curves of a particular 
example where the subalgebra B is not a von Neumann algebra.

Denote with K + C the C∗-algebra obtained after the unitization of the compact operators in B(H), 
that is {X ∈ B(H) : X = K + θI, K ∈ K, θ ∈ C}. H will be a separable Hilbert space, and UK+C will 
denote the unitary operators of K(H) + C. If we fix an orthonormal basis {ei}i∈N in H, we can consider 
matricial characterizations of elements in B(H) as diagonal operators. Let b be a compact diagonal self-
adjoint operator with spectral multiplicity one, and Ob the orbit

Ob = OUK+C

b = {ubu∗ : u ∈ UK+C} (1.2)

This orbit has a structure of a smooth homogeneous space under the action of UK+C with the identification 
Ob � UK+C/UD(K+C) (see for example Lemma 1 of [4] and the discussion that follows it).

As we comment in Remark 3.2 the homogeneous space Ob coincides with the orbit of b under the action 
of several other unitary subgroups. Moreover, a natural Finsler metric defined on the tangent spaces (see 
3.1) and a distance (see (3.6)) in Ob is also preserved if we consider those different unitary subgroups.

In this context, we analyze geodesic neighborhoods of Ob and cases of short curves satisfying initial con-
ditions or connecting given endpoints that cannot be obtained using minimal operators V ∈ (K(H) + C)ah. 
In Theorem 4.1 it is shown that short curves in Ob of the form (1.1) can be constructed using minimal 
operators Z ∈ (K(H) + D(B(H)))ah. These geodesics and a result from [7] allows us to prove in 5.4 a Hopf-
Rinow local theorem for Ob. We also consider certain types of minimal operators with diagonal belonging to 
D(B(H)) \D(K(H) +C) and construct with them short curves γ in Ob (for the distance (3.6)) such that in 
a fixed neighborhood, there is no curve δ of the form δ(t) = etV be−tV with V a minimal vector in (K+C)ah
that starts in b and ends in γ(t) (see 5.9). This means that there exist geodesics that cannot be obtained 
using minimal vectors V in (K + C)ah.

In the general context mentioned at the beginning of this section the previous results imply that if B is 
only required to be a C∗-algebra then, even when Hopf-Rinow type theorems can be obtained, there exist 
short curves in UA/UB that cannot be described using minimal elements of A.

2. Preliminaries

Let B(H) be the algebra of bounded operators on a separable Hilbert space H, and K(H) and U(H)
the compact and unitary operators respectively. If an orthonormal basis {ei}i∈N is fixed we can consider 
matricial representations of each A ∈ B(H), that is A = (Ai,j)i,j∈N = (〈Aei, ej〉)i,j∈N and diagonal operators 
which we denote with D (B (H)). Any D ∈ D (B (H)) fulfills 〈Dei, ej〉 = 0 for every i �= j.

With the preceding notation, we define columns (and similarly, rows) of any operator A ∈ B(H) as 
cj(A) =

∑∞
i=1 〈Aei, ej〉 ej = (A1j , A2j , ...) ⊂ �2, for each j ∈ N.

We call Uk the Fredholm subgroup of U(H), defined as

Uk = {u ∈ U(H) : u− I ∈ K(H)}
= {u ∈ U(H) : ∃ K ∈ K(H)ah, u = eK},

(2.1)
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and the subgroup studied in [5]:

Uk,d = {u ∈ U(H) : u− eD ∈ K(H) for D ∈ (D (B (H)))ah}
= {u ∈ U(H) : ∃ K ∈ K(H)ah and (D (B (H)))ah , such that u = eKeD},

(2.2)

where I is the identity in B(H) and the superscript ah means anti-Hermitian as well as h means Hermitian.
Consider the unitization of K(H)

K + C = K(H) + {λI : λ ∈ C} ⊂ B(H),

endowed with the norm

||K + λI‖K+C = sup{‖KC + λC‖ : C ∈ K(H), ‖C‖ = 1},

for any K + λI ∈ K + C (here ‖ · ‖ is the usual operator norm in B(H)). The ‖ ‖K+C norm coincides with 
the operator norm in B(H):

||K + λI||K+C = ‖K + λI‖

(this follows after considering the multiplication (K+λI)C for C = h ⊗h ∈ K(H), with h ∈ H and ‖h‖ = 1).
The space (K + C, || · ||K+C) is a unital C∗-algebra with unit IK+C = 0 + 1.I = I.
Let D (K (H)) = D (B (H)) ∩ K(H) and define the subspace of diagonal operators of K + C, given by

D(K + C) = D (K (H)) + {λI : λ ∈ C}.

It is apparent that D(K + C) is a unital C∗-subalgebra of K + C and IK+C ∈ D(K + C).
If u = K +λI ∈ (K+C) is a unitary operator, direct computations show that KK∗ = K∗K and |λ| = 1. 

Therefore, there exists θ ∈ R (λ = eiθ) such that u verifies that u − eiθI ∈ K(H). Then u ∈ Uk,d (see 
(2.2)) and therefore there exists K0 ∈ K(H)ah such that u = eK0eiθI for the same θ (as seen in the proof 
of Proposition 3.3 in [5]). Moreover, it is apparent that if u = eKeiθI , with θ ∈ R and K ∈ K(H)ah, then 

u = eiθI +
(∑

n�1
Kn

n! e
iθI
)
∈ UK+C, the unitary group of K + C.

Similar considerations can be made with the unitaries of D(K + C). If v ∈ UD(K+C) then v = d + eiθI

with d ∈ D (K (H)) and θ ∈ R. This implies that |dj,j + eiθ| = 1 for all j ∈ N and therefore (d + eiθI) = eiR

with R a real diagonal matrix such that Rj,j → θ when j → ∞. Conversely, if v = eiR with Rj,j ∈ R

and limj→∞ Rj,j = θ, then v = ei(R−θI)eiθI ∈ UD(K+C) because limj→∞(Rj,j − θ) = 0 and therefore 
i(R− θI) ∈ K(H)ah.

Then the unitary groups of K + C and D(K + C) can be described as follows:

UK+C = Uk.{eiθI : θ ∈ R} = {eKeiθI : K ∈ K(H)ah and θ ∈ R}
= {eK+iθI : K ∈ K(H)ah and θ ∈ R}

(2.3)

and

UD(K+C) = {d + eiθI : d ∈ D (K (H)) , θ ∈ R such that |dj,j + eiθI | = 1}
= {ed0+iθI : d0 ∈ D (K (H))ah and θ ∈ R}
= {eL0 : L0 ∈ D (B (H))ah such that lim (L0)j,j = iθ with θ ∈ R}.
j→∞
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3. The homogeneous unitary orbit of a self-adjoint compact operator

Given a subgroup U ⊂ U(H) we will denote with OU
b the orbit of self-adjoint element b ∈ K(H)h by a 

subgroup U ⊂ U(H), that is

OU
b = {ubu∗ : u ∈ U}

Let b = Diag ({bi}i∈N) ∈ D(K(H)h) denote the diagonal operator with the sequence {bi}i∈N in its diagonal. 
We study the unitary orbit of b ∈ K(H) ⊂ K + C with bi �= bj for each i �= j under the action of UK+C:

Ob = OUK+C

b = {ubu∗ : u ∈ UK+C}. (3.1)

Observe that it is apparent that the following inclusions hold for these subgroups of U(H):

Uk � UK+C � Uk,d.

Nevertheless the orbit of b under the three subgroups is the same set Ob because

eKbe−K = eKeitIbe−itIe−K = eK+itIbe−K−itI (3.2)

for t ∈ R and then OUk

b = OUk,d

b (see for example Remark 4.4 in [5]). Moreover, we will show further that 
the three of them share the same natural Finsler metric on the tangent spaces (as seen in Remark 4.5 in [5]
for the cases of OUk

b and OUk,d

b ).
Ob has a smooth structure as described in Lemma 1 in [4] and the comments that follow it.
The isotropy group at any c ∈ Ob = OUK+C

b is Ic = {u ∈ UK+C : ucu∗ = c}. In particular,

Ib = {u ∈ UK+C : [u, b] = 0} = UD(K+C).

Remark 3.1. If c ∈ Ob, the following identification can be made:

TcOb
∼= (TUK+C)1/(TIb)1 = (K + C)ah/(D(K + C))ah.

Observe that

(K + C)ah/D(K + C)ah =
{
[X] : X = K0 + iθ0I, K0 ∈ K(H)ah and θ0 ∈ R

}
,

where [X] is the class defined as Y ∈ [X] iff Y = X + d + iθI for d ∈ D(K(H)ah) and θ ∈ R. This quotient 
space is endowed with the usual quotient norm, that in this case for X = K0 + iθ0I is

‖[X]‖ = ‖[K0 + iθ0I]‖ = inf
θ∈R; d∈D(K(H)ah)

‖K0 + iθ0I + d + iθI‖K+C

= inf
θ∈R; d∈D(K(H)ah)

‖K0 + d + iθI‖K+C.

In this context, a natural Finsler metric for any x ∈ TbOb, x = Xb − bX, with X ∈ (K + C)ah is

‖x‖b = inf{‖Y ‖ : Y ∈ (K + C)ah, Y b− bY = Xb− bX}
= inf

d∈D(K(H)ah)
‖X + d + iθI‖K+C = inf

d∈D(K(H)ah)
‖X + d + iθI‖ (3.3)
θ∈R θ∈R
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where X + d + iθI is any element of the class [X] = {Y ∈ (K +C)ah : Y = X + d + iθI, for θ ∈ R and d ∈
D(K(H)ah)} in (K + C)ah/D(K + C)ah.

An element Y ∈ B(H)ah such that Y b − bY = x and ‖Y ‖K+C = ‖Y ‖ = ‖[X]‖ = ‖x‖b will be called a 
minimal lifting for x, and its diagonal will be a minimal diagonal approximant (or minimizing diagonal) for 
Y . This operator Y may not be compact nor unique (see [3]), and it will be called a minimal operator.

Given any c = eK+itIbe−K−itI = eKbe−K ∈ Ob (K ∈ K(H)ah, t ∈ R) we can define the norm in its 
tangent space TcOb using that z = Zc − cZ ∈ TcOb for Z = eKXe−K ∈ K(H)ah and Xb − bX ∈ TbOb. 
Then the Finsler norm in TcOb is ‖z‖c = ‖[Z]‖ = inf{‖Y ‖ : Y ∈ (K+C)ah, Y c − cY = Zc − cZ} = ‖[X]‖. 
Note that this norm is invariant under the action of UK+C.

Remark 3.2. As it was mentioned before in (3.2), the following orbits are equal

OUK+C

b = OUk

b = OUk,d

b

for Uk � UK+C � Uk,d defined in (2.1), (2.3) and (2.2) respectively (see Proposition 4.1, 4.4 and Remark 
4.7 in [5]).

Let X ∈ (K + C)ah, X = K + itI with K ∈ K(H)ah and t ∈ R, then

inf
D∈D(B(H)ah)

‖K + D‖ = inf
D∈D(B(H)ah)

‖
X︷ ︸︸ ︷

K + itI + D‖ � inf
d∈D(K(H)ah)

θ∈R

‖X + iθI + d‖

= inf
d∈D(K(H)ah)

θ∈R

‖K + iθI + d‖ � inf
d∈D(K(H)ah)

‖K + d‖.
(3.4)

But since inf
d∈D(K(H)ah)

‖K + d‖ = inf
D∈D(B(H)ah)

‖K + D‖, [Prop. 5, [3]], the previous inequalities imply that 

all those infimums are equal.
This means that also the Finsler metric defined for TcOb in (3.3) coincides if we consider any of the 

quotients K(H)ah/D(K(H)ah), (K + C)ah/D(K + C)ah or (K(H)ah + D (B (H))ah)/D (B (H))ah (see also 
Remark 4.5 in [5]).

Remark 3.3. Observe that nevertheless Ob � OU(H)
b . This follows because if we suppose that for every 

X ∈ B(H)ah holds that eXbe−X = eKbe−K for K ∈ K(H)ah, then e−KeX must be a diagonal unitary. 
Therefore, for all X ∈ B(H)ah we could write that eX = eKeD for D ∈ D (B (H))ah which is known to be 
false (see for example Remark 3.7 in [5]).

Consider piecewise smooth curves β : [a, b] → OUK+C

b . We define

L(β) =
b∫

a

‖β′(t)‖β(t) dt , and (3.5)

dist(c1, c2) = inf {L(β) : β is smooth, β(a) = c1, β(b) = c2} (3.6)

as the rectifiable length of β and distance between two points c1, c2 ∈ OUK+C , respectively.
b
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4. A short curve in Ob obtained acting with a minimal operator not belonging to 
(K + C)ah/D(K + C)ah

Consider the following operator described as an infinite matrix:

Zδ,γ = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −δ γ −δ2 γ2 −δ3 γ3 · · ·
−δ 0 γ −δ2 γ2 −δ3 γ3 · · ·
γ γ 0 −δ2 γ2 −δ3 γ3 · · ·

−δ2 −δ2 −δ2 0 γ2 −δ3 γ3 · · ·
γ2 γ2 γ2 γ2 0 −δ3 γ3 · · ·
−δ3 −δ3 −δ3 −δ3 −δ3 0 γ3 · · ·
γ3 γ3 γ3 γ3 γ3 γ3 0 · · ·
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, with γ, δ ∈ (0, 1).

Zδ,γ is a Hilbert-Schmidt operator which has been studied in [4] in its self-adjoint version. We recall here 
some of its properties.

Let γ2 = δ and δ2 < γ (for example γ = 1/2 and δ = 1/4), and denote with Z [1]
δ,γ the operator defined by 

the matrix of Zδ,γ with zeros in the first column and row, with c1(Zδ,γ) the first column of Zδ,γ , and with D0
the (uniquely determined) diagonal matrix such that every (D0)i,i is chosen to satisfy ci(Zδ,γ) ⊥ c1(Zδ,γ)
for all i �= 1. Then

Zo =
‖Z [1]

δ,γ + D0‖
‖c1(Zδ,γ)‖ (Zδ,γ − Z

[1]
δ,γ) + Z

[1]
δ,γ (4.1)

is also a Hilbert-Schmidt operator with the property that D0 (constructed as mentioned before) is a minimal 
diagonal for Zo (see (5.1) in [4] for a detailed proof of these statements and the following comments). 
Moreover, it has been proved that D0 ∈ D(B(H)ah) is the unique bounded best approximant anti-Hermitian 
diagonal of Zo. D0 has the particular property that limk→∞(D0)2k,2k �= limk→∞(D0)2k+1,2k+1 and both 
limits are not null. Therefore D0 is not compact and we call it an oscillant diagonal. We will write with

Z2 = Zo + D0 (4.2)

to denote the minimal operator constructed as above.
Then

dist(Zo,D(K(H)ah)) = ‖[Zo]‖K(H)ah/D(K(H)ah) = ‖Z2‖ = ‖c1(Z2)‖ = ‖c1(Zo)‖. (4.3)

Theorem 4.1. Let b = Diag ({bi}i∈N) ∈ D(K(H)h) with bi �= bj for each i �= j. Consider the unitary orbit 
OUK+C

b defined in (3.1) and x = Zb − bZ ∈ TbOb, for Z a minimal operator in K(H)ah + D (B (H))ah. 
Then the uniparametric group curve γ(t) = etZbe−tZ has minimal length in the class of all curves in OUK+C

b

joining γ(0) and γ(t) for each t ∈
[
− π

2‖Z‖ ,
π

2‖Z‖

]
.

Proof. This proof is a direct consequence of mentioned previous results, but we include here the citations 
and reasonings for the sake of clarity.

By Theorem 4.2 in [5], γ(t) ∈ OUk

b for any t ∈ R. Using Remark 3.2, we obtain that γ(t) ∈ OUK+C

b =
Ob, ∀ t. Moreover,

‖x‖b = ‖Zb− bZ‖b = ‖[Z]‖ = inf
ah

‖Z + d + iθI‖ = ‖Z‖,

θ∈R; d∈D(K(H) )
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where the minimality of Z implies the last equality.
Consider Pb = {ubu∗ : u ∈ U(H)}, then by Theorem II in [7], since Z is minimal, the curve γ has 

minimal length over all the smooth curves in Pb that join γ(0) = b and γ(t), with |t| � π
2‖Z‖ . Since clearly 

OUK+C

b ⊆ Pb, then for each t0 ∈
[
− π

2‖Z‖ ,
π

2‖Z‖

]
follows that γ is a short curve in OUK+C

b , that is

L
(
γ
∣∣
[0,t0]

)
= dist(b, γ(t0)),

where dist(b, γ(t0)) is the rectifiable distance between b and γ(t0) defined in (3.6). �
Corollary 4.2. Let b = Diag ({bi}i∈N) ∈ D(K(H)h) with bi �= bj for each i �= j. Consider the unitary orbit 
OUK+C

b defined in (3.1), x = Zob − bZo ∈ TbOb, for Zo defined in (4.1), with D0 its unique minimizing 
diagonal, and Z2 = Zo + D0 defined in (4.2).

Then the uniparametric group curve γ(t) = etZ2be−tZ2 has minimal length in the class of all curves in 

OUK+C

b joining γ(0) and γ(t) for each t ∈
[
− π

2‖Z2‖ ,
π

2‖Z2‖

]
.

Proof. If we consider Z = Z2 = Zo +D0 in the statements of Theorem 4.1, then Z2 satisfies the conditions 
required and therefore the proof is apparent. �

The previous result will allow us to state that the converse of Theorem I in [7] does not necessary hold 
when the subalgebra considered (here D(K+C)) is not a von Neumann algebra. Let us describe the context 
of that article. Let A be a C∗-algebra and B a C∗-subalgebra, then a natural Finsler metric as the one in 
(3.3) is defined for the generalized flag P = UA/UB. If the element X ∈ Aah is minimal for a tangent vector 
x ∈ Tp(UA/UB) � T1(UA)/T1(UB) (that is: x = Xp − pX and ‖X‖ = inf{‖Y ‖ : Y ∈ Aah; Y p − pY = x}) 
then the curve γ(t) = LetX · p has minimal length for |t| � π

2‖X‖ (where L is a left action on P) with the 
distance defined in (3.6).

The following result shows that there might exist some minimal curves γ in these generalized flags 
P = UK+C/UD(K+C) that are not of the form γ(t) = LetZ · p for Z ∈ Aah a minimal lifting of a tangent 
vector x ∈ T1(UA)/T1(UB).

Remark 4.3. Let Z2 be the operator defined in (4.2). As it was mentioned in Corollary 4.2, the uniparametric 
curve γ(t) = etZ2be−tZ2 has minimal length in the class of all curves in Ob = OUK+C

b joining γ(0) and γ(t)
for each t ∈

[
− π

2‖Z2‖ ,
π

2‖Z2‖

]
.

Therefore the curve γ is included in Ob with initial conditions γ(0) = b, γ′(0) = x = Zob − bZo even 
for velocity vectors x ∈ TbOb that do not have a minimal compact lifting K0 (recall that Zo + D0 is not 
compact and D0 is its unique minimizing diagonal). Thus UK+C is an example of a group whose action on 
Ob has short curves that might not be described using minimal vectors Y ∈ (K + C)ah. This is not new 
(for instance, see Remark 4.7 in [5]), but in the present case K + C and D(K + C), whose anti-Hermitian 
elements are the Lie-algebras of UK+C and UD(K+C) respectively, are unital C∗-algebras.

We will develop some details of this situation in the next section.

5. Neighborhoods of short curves defined by minimal vectors in UK+C/UD(K+C)

In this section we will consider the problem of the existence of a neighborhood around b ∈ Diag(K(H))h
with bi,i �= bj,j for i �= j whose elements can be joined with b with a short curve of the form

γ(t) = etZbe−tZ

for some minimal anti-Hermitian element Z ∈ (K + C)ah and t in some interval.
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Recall here Z2 = Zo +D0 defined in (4.2) where Zo ∈ K(H)ah is the Hilbert-Schmidt operator defined in 
(4.1) and D0 is its unique minimizing diagonal with the property that D0 has subsequences that converge 
to two different (not null) limits as described in the previous section. Moreover, Z2 satisfies,

(1) ‖Z2‖ = ‖c1(Z2)‖,
(2) c1(Z2)1 = (Z2)1,1 = 0 and
(3) c1(Z2)j = (Z2)j,1 �= 0 for all j �= 1.

Lemma 5.1. Let γ(t) = etZbe−tZ ⊂ Ob with Z ∈ B(H)ah a minimal operator with unique minimizing 
diagonal, and consider a curve δ(t) = etV be−tV , with V ∈ B(H)ah another minimal operator such that 
δ′(0) = V b − bV = γ′(0) = Zb − bZ. Then it must be Z = V .

Proof. Since δ′(0) = γ′(0), then

δ′(0) = V b− bV = γ′(0) = Zb− bZ

and therefore V − Z commutes with b. Then V − Z ∈ D(B(H)ah) which implies that Z and V must be 
equal outside their diagonals. Then, since Diag(Z) is the only minimizing diagonal for Z and V is also a 
minimal operator then Diag(V ) = Diag(Z) which implies that V = Z. �
Remark 5.2. Observe that if we apply the previous lemma to the case where Z = Z2 defined in (4.2) and δ
and V satisfy the assumptions of the lemma, then in particular V /∈ (K+C)ah. This is a direct consequence 
of the fact that Z2 has two different non zero diagonal limits, something that V ∈ (K + C) cannot satisfy.

Lemma 5.3. Let Z = KZ + Diag(Z) with KZ ∈ K(H)ah, Diag(Z) ∈ D (B (H))ah be a minimal operator and 

γ : [0, π
2‖Z‖ ] → Ob the short curve defined as γ(t) = etZbe−tZ (see Theorem 4.1) and let δ :

[
0, π

2‖V ‖

]
→ Ob

be another short curve defined by δ(s) = esV be−sV for V = KV + Diag(V ) another minimal operator 
with KV ∈ K(H)ah and Diag(V ) ∈ D (B (H))ah. Moreover, suppose that there exists t1 ∈

(
0, log(2)/8

‖Z‖

]
and 

s1 ∈
(
0, π

2‖V ‖

]
such that γ(t1) = δ(s1).

Then

et1Z = es1V e−Diag(s1V )+Diag(t1Z) and ‖s1V ‖ = ‖t1Z‖.

Proof. Note that t1 satisfies ‖t1Z‖ < (log 2)/8, and then t1Z is sufficiently close to zero in the sense of 
Definition 2.1 of [5].

Now consider the equality γ(t1) = δ(s1)

es1V be−s1V = et1Zbe−t1Z .

Then

be−s1V et1Z = e−s1V et1Zb

which implies that b commutes with e−s1V et1Z . Therefore e−s1V et1Z is diagonal and unitary. Then there 
exists D ∈ D (B (H))ah such that e−s1V et1Z = eD.

Observe that since Z is a minimal operator the length of γ restricted to [0, t1] is ‖t1Z‖ and if δ is a short 
curve then the length of δ must coincide with ‖t1Z‖ (see Theorem 4.1 in [7]). Since the length of δ restricted 
to [0, s1] equals ‖s1V ‖ because V is a minimal operator, then ‖t1Z‖ = ‖s1V ‖. Also t1Z is sufficiently close 
to zero (thus s1V ), so we can apply Proposition 3.11 and Corollary 3.12 of [5] to obtain
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eD = e−s1V et1Z

= e−s1V +Diag(s1V )−Diag(s1V )et1Z−Diag(t1Z)+Diag(t1Z)

= eK−Diag(s1V )+Diag(t1Z)

(5.1)

for K ∈ K(H)ah with Diag(K) = 0. Then, since ‖t1Z‖ = ‖s1V ‖ < (log 2)/8, then ‖D‖ =
‖ log(e−s1V et1Z)‖ � −1/2 log

(
2 − e2‖t1Z‖+2‖s1V ‖) < π (see some of the Baker-Campbell-Hausdorff 

series bounds in [2] or [10]). This implies that D = K − Diag(s1V ) + Diag(t1Z) because eD =
eK−Diag(s1V )+Diag(t1Z) and both anti-Hermitian exponents have norm less than π (see for example Corollary 
4.2 iii) of [6]). But, since Diag(K) = 0 and D ∈ D (B (H))ah, then

D = −Diag(s1V ) + Diag(t1Z) (5.2)

and K = 0. �
Theorem 5.4. (Local Hopf-Rinow theorem) There exists Wb ⊂ Ob = OUK+C

b a neighborhood (with the distance 
defined in (3.6)) of b ∈ D(K(H)h) with bi,i �= bj,j for i �= j, such that for every ρ ∈ Wb there exists a short 
curve γ in Ob that joins b with ρ, and γ : [0, 1] → Wb ⊂ Ob,

γ(t) = et(Kρ+Dρ)be−t(Kρ+Dρ),

with Kρ ∈ K(H)ah, Dρ ∈ D (B (H))ah, ‖Kρ‖, ‖Dρ‖, ‖Kρ +Dρ‖ < log(2)
4 , and (Kρ +Dρ) a minimal operator 

in K(H)ah + D (B (H))ah.

Proof. If we consider the isotropy compact generalized flag manifold P = U(H)/D(U(H)) then for ρ0 ∈ P
there exists a neighborhood

Vρ0 = {Luρ0 : u = eX , for X ∈ B(H)ah, ‖X‖ < π/2}

where a local Hopf-Rinow theorem holds (see Theorem II-1 and Example 1 of [8]). That is, for every ρ ∈ Vρ0

there exist a minimal operator X ∈ B(H)ah with ‖X‖<π/2 and a minimal uniparametric group curve 
γ : [0, 1] → P, γ(t) = LetXρ0 joining γ(0) = ρ0 and γ(1) = ρ.

The generalized flag manifold P = U(H)/D(U(H)) can be identified with the unitary orbit of b ∈
D(K(H)h) with bi,i �= bj,j as well as its tangent spaces as we have done with Ob in Remark 3.1:

Tc OU(H)
b � T1 U(H)/T1 D (U(H)) = B(H)ah/D (B (H))ah

Since we are using the adjoint action L, then Lub = ubu∗ in this context. And if we consider ρ0 = b we 
can conclude that for any ρ = eKbe−K ∈ (Ob ∩ Vb) with K ∈ K(H)ah (see (3.2)), there exists a minimal 
operator Z ∈ B(H)ah with ‖Z‖ < π/2, such that

γ : [0, 1] → OU(H)
b , γ(t) = etZbe−tZ , with γ(0) = ρ0 = b and γ(1) = ρ = eKbe−K = eZbe−Z . (5.3)

Note that in this case eZ cannot be any element of U(H) because eKbe−K = eZbe−Z implies that eZ = eKeD

for D ∈ D (B (H))ah, and therefore eZ ∈ Uk,d. Moreover, we will show that choosing a smaller neighborhood 
Z can be written as Z = K ′+D′, with K ′ ∈ K(H)ah, D′ ∈ D (B (H))ah. In order to obtain this last assertion 
recall from Lemma 3.14 of [5] that there exists ε0 > 0 such that if u ∈ Uk,d satisfies ‖u − 1‖ < ε0, then 
there exist K ′ ∈ K(H)ah and D′ ∈ (D (B (H)))ah with u = eK

′+D′ for ‖K ′‖, ‖D′‖, ‖K ′ + D′‖ < log 2
4 (see 

Definition 2.1 and the proof of Lemma 3.14 of [5]).
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Then define the neighborhood of b in Ob:

Wb = {ubu∗ : u = eZ ∈ Uk,d, Z ∈ B(H)ah, ‖Z‖ < log(1 + ε0)}

with ε0 from Lemma 3.14 of [5]. Note that Wb � (Vb ∩ Ob) �
(
Vb ∩ OU(H)

b

)
. It is apparent that if u =

eZ ∈ Uk,d, with Z ∈ B(H)ah, ‖Z‖ < log(1 + ε0), then ‖eZ − 1‖ � e‖Z‖ − 1 < ε0. Applying the mentioned 
lemma, this implies that in this case there exist K ′ ∈ K(H)ah and D′ ∈ D (B (H))ah with u = eK

′+D′

for ‖K ′‖, ‖D′‖, ‖K ′ + D′‖ < log 2
4 . Following the discussion after (5.3), if γ : [0, 1] → OU(H)

b is the short 
curve γ(t) = etZbe−tZ ⊂ Vb for Z ∈ B(H)ah a minimal operator such that γ(1) = eKbe−K ∈ Ob (for 
K ∈ K(H)ah), then it must be eZ = eKeD ∈ Uk,d. Moreover, since ‖eZ − 1‖ < ε0, there exist K ′ ∈ K(H)ah
and D′ ∈ D (B (H))ah satisfying

eZ = eK
′+D′

, for ‖K ′ + D′‖ <
log 2

4 =⇒ Z = K ′ + D′

because Z and K ′ + D′ have norm smaller than π. Then the entire curve γ : [0, 1] → OU(H)
b is included in 

Ob = OUK+C

b . In this case, being Z = K ′ +D′, the distance from ρ0 = b to ρ = eZbe−Z is the same either if 
we consider the Finsler metrics in Ob or in OU(H)

b (see (3.4)). Then γ(t) = etZbe−tZ = et(K
′+D′)be−t(K′+D′), 

γ : [0, 1] → Ob defines a short curve between b and ρ = eKbe−K = e(K′+D′)be−(K′+D′), with K ′ +D′ = Z a 
minimal operator of K(H)ah+D (B (H))ah. The statement of the theorem follows after substituting K ′ = Kρ

and D′ = Dρ.
The element ρ = eKbe−K ∈ Wb was chosen arbitrarily, so we have proved that Wb is a geodesic neigh-

borhood of b in Ob. �
Remark 5.5. Observe that the unitary eKρ+Dρ ∈ Uk,d mentioned in the previous theorem might not belong 
to K + C, but γ(t) = et(Kρ+Dρ)be−t(Kρ+Dρ) ∈ Ob for every t (see Remark 3.2).

Remark 5.6. Let c = eK0be−K0 ∈ Ob, with K0 ∈ K(H)ah. The action Lu(c) = ucu∗, for u ∈ UK+C is 
invariant for the distance defined in Ob and therefore the previous result also holds in this case. That is, 
there exists a geodesic neighborhood Wc of c such that every ρ ∈ Wc is joined with c by short curves 
included in Ob of the form LeK0 ◦ γ (for γ the curve described in Theorem 5.4).

Here we recall some results and the notation used in [7] and state its translation to the particular example 
we are studying. In the work mentioned, the minimality of a curve γ : [0, π

2‖Z‖ ] → Ob, γ(t) = etZbe−tZ , with 
Z be a minimal lifting of x ∈ TbOb, was proved using a unitary reflection r0 in a Hilbert space with certain 
properties (see Definition 2.4 in [7]), a representation of A in B(H) with particular properties (in our case 
the identity representation verifies them) and a map F : Ob → Gr(H) (Gr(H) is the Grassmann manifold 
of H) defined by F (ubu∗) = ur0u

∗. The unitary reflection r0 used there is

r0(x) =
{

x, if x ∈ Sb,

−x, if x ∈ S⊥
b ,

(5.4)

where Sb is the closure of Ω = {x ∈ H : x = Uξ, for U a diagonal in UK+C} and ξ ∈ H certain vector 
satisfying Definition 4.1 of [7].

Now, if we consider the particular case in which Z is a minimal operator such that ‖Z‖ = ‖cj0(Z)‖, 
cj0(Z)j0 = Zj0,j0 = 0 and cj0(Z)j = Zj,j0 �= 0 for all j �= j0 (see the example of (4.2) and Lemma 6.1) we 
can be much more specific about r0 and ξ.
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After the corresponding translation to this case

ξ = i ej0 , Sb = gen{ξ} and r0(x) =
{

x, if x ∈ gen{ξ} = gen{ej0},
−x, if x ∈ gen{ξ}⊥ = gen{ej0}⊥.

(5.5)

Moreover, ξ fulfills Definition 4.1 in [7], since Z2ξ = −‖Z‖2ξ, r0(ξ) = ξ and r0(Zξ) = −Zξ. Therefore, 
γ(t) = etZbe−tZ minimizes length between the points γ(0) = b and γ(t) if 0 � t � π

2‖Z‖ .
In this context, the map Fξ : Ob → S ⊂ H, Fξ(ubu∗) = ur0u

∗(ξ), where S is the unit sphere of H, 
reduces length. That is, if δ : [0, t0] → Ob and v : [0, t0] → S , v(t) = Fξ(δ(t)) then (see Corollary 3.4 in [7])

�(v) � L(δ)

with L defined in (3.5) and � the length in S .
The following result is an application of Theorem 4.1 and Lemma 4.2 in [7] to our context.

Proposition 5.7. Let Z and V be minimal operators of (K(H) + D(H))ah and consider the following curves 
in Ob (defined in (3.1))

γ(t) = etZbe−tZ and δ(t) = etV be−tV , t > 0.

Suppose additionally that there exists 0 � t0 � min
{

π
2‖Z2‖ ; π

2‖V ‖

}
such that γ(t0) = δ(t0).

Then, following the previous notation,

(1) w(t) = Fξ(γ(t)) and v(t) = Fξ(δ(t)) both are geodesics in the sphere S ⊂ H and

�(w) = L(γ) = L(δ) = �(v).

(2) γ and δ minimize length between the points b and γ(t) and δ(t) respectively, if 0 � t � t0.
(3) v(t) = etV r0e

−tV (ξ) = etZr0e
−tZ(ξ) = w(t), for 0 � t � t0 and r0 the unitary reflection defined in 

(5.4).

Proof. As it was mentioned before, items (1) and (2) are a direct consequence of Theorem 4.1 and Lemma 
4.2 in [7]. If γ(t0) = δ(t0), w(t0) and v(t0) match. Since geodesics for fixed ending points in the unit sphere 
S are unique (maximum circles), then w(t) = v(t), for all 0 � t � t0. �

Observe that the assumption of existence of such t0 is possible even if γ(t1) = δ(t2) for t1 �= t2, since δ(t)

can be re-scaled defining δ̃(t) = et
t2
t1

V be−t
t2
t1

V , for t ∈
[
0, π

2 t2
t1

‖V ‖

]
and then δ̃(t1) = γ(t1).

Lemma 5.8. Let b ∈ D(K)h with bi,i �= bj,j for i �= j, Z, V ∈ (K(H) + D(B(H)))ah be minimal operators 
such that for some j0 ∈ N ‖Z‖ = ‖cj0(Z)‖, cj0(Z)j0 = Zj0,j0 = 0 and cj0(Z)j = Zj,j0 �= 0 for all j �= j0. 
Moreover, if there exists t0 with 0 < t0 � π

2‖Z‖ that satisfies et0Zbe−t0Z = es0V be−s0V , for s0 ∈
[
0, π

2‖V ‖

]
, 

then

s0cj0(V ) = t0cj0(Z),

that is, the jth0 column of Z is a multiple of the jth0 column of V .
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Proof. We can suppose that j0 = 1. First, consider W = s0
t0
V ,

γ(t) = etZbe−tZ and δ0(t) = etW be−tW

for t ∈
[
0, π

2‖Z‖

]
. Then γ(t0) = es0V be−s0V = et0s0/t0V be−t0s0/t0V = δ0(t0). Moreover, since also W is a 

minimal operator, then γ and δ0 are short curves in the interval [0, t0] and then the length of γ
∣∣[0,t0] equals 

that of δ0
∣∣[0,t0] . That is, t0‖Z‖ = t0‖W‖ (see for example Theorem 4.1 of [7]) and therefore in particular

‖Z‖ = ‖W‖. (5.6)

Using the preceding notations of Proposition 5.7, the assumptions made here imply that v(t) = Fξ(γ(t)) =
Fξ(δ0(t)) = w(t), for t ∈ [0, t0]. Then their derivatives coincide for every t ∈ [0, t0]

w′(t) =
(
WetW r0e

−tW − etW r0e
−tWW

)
(ξ) =

(
ZetZr0e

−tZ − etZr0e
−tZZ

)
(ξ) = v′(t), (5.7)

where ξ = ie1, η = c1(Z)
‖c1(Z)‖ and the reflection r0 are defined in (5.5) and fulfill r0(ξ) = ξ and r0(η) = −η.

Then, if we evaluate (5.7) in t = 0

w′(0) = (Wr0 − r0W ) (ξ) = (Zr0 − r0Z) (ξ) = v′(0).

Hence, since r0(ξ) = ξ and r0(c1(Z)) = r0(‖c1(Z)‖η) = ‖c1(Z)‖ r0(η) = −‖c1(Z)‖η = −c1(Z),

Wr0(ξ) − r0W (ξ) = Zr0(ξ) − r0Z(ξ)

W (ie1) − r0W (ie1) = Z(ie1) − r0Z(ie1)

ic1(W ) − ir0(c1(W )) = ic1(Z) + r0 (ic1(Z))

i(I − r0) (c1(W )) = i2c1(Z)

(5.8)

On the other hand, if we consider the decomposition H = gen{ξ} ⊕ (gen{ξ})⊥ then the identity operator I
and r0 can be matricially described as

I =
(

1 0
0 1

)
and r0 =

(
1 0
0 −1

)
,

respectively. Then, (5.8) implies that (I − r0)(c1(W )) = 2(c1(W ) −W1,1e1) = 2c1(Z) and then

c1(W ) −W1,1e1 = c1(Z) (5.9)

and ‖c1(Z)‖ = ‖Z‖ = ‖W‖ (see (5.6)). This implies that ‖c1(W ) −W1,1e1‖ = ‖W‖, and therefore

W1,1 = 0,

since otherwise ‖c1(W )‖ > ‖W‖, which is a contradiction. Therefore, returning to (5.9) we obtain that 
c1(W ) = c1(Z) that implies that

c1

(
s0

t0
V

)
= c1(Z)

which ends the proof. �
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Next, we obtain the second main result of this section.

Theorem 5.9. Let b ∈ D(K)h with bi,i �= bj,j for i �= j, Z ∈ (K(H) +D(B(H)))ah be a minimal operator such 
that for some j0 ∈ N, holds that ‖Z‖ = ‖cj0(Z)‖, cj0(Z)j0 = Zj0,j0 = 0, cj0(Z)j = Zj,j0 �= 0 for all j �= j0, 
the sequence {Diag(Z)j,j}j∈N has more than one not null accumulation points, and γ(t) = etZbe−tZ , for 
t ∈

(
0, log 2

8‖Z‖

)
.

Then there is not any minimal operator V ∈ (K+C)ah such that δ(t) = etV be−tV , t ∈
[
0, π

2‖V ‖

]
satisfies 

γ(t0) = δ(s0) for t0, s0 in the respective domains.

Proof. As done before, we are going to prove only the case j0 = 1. Suppose that there exists a minimal 
operator V ∈ (K+C)ah such that δ(s0) = es0V be−s0V = γ(t0), for s0 ∈

(
0, π

2‖V ‖

]
and t0 ∈

(
0, log 2

8‖Z‖

)
. Note 

that in particular t0 < log 2
8‖Z‖ < π

2‖Z‖ which implies that γ is a short curve in all its domain.
Applying Lemma 5.3, − Diag(s0V ) + Diag(t0Z) ∈ D (B (H))ah is such that

e−s0V et0Z = e−Diag(s0V )+Diag(t0Z)

and ‖t0Z‖ = ‖s0V ‖.
(5.10)

Then, the fact that Z satisfies ‖Z‖ = ‖c1(Z)‖ (see (4.3)) implies that V must fulfill that

‖V ‖ = t0
s0

‖c1(Z)‖ (5.11)

Using Lemma 5.8 follows that t0c1(Z) = s0c1(V ), and therefore (5.11) implies that ‖V ‖ = t0
s0
‖c1(Z)‖ =

t0
s0

∥∥∥ s0
t0
c1(V )

∥∥∥ = ‖c1(V )‖.
Then Lemma 6.1 implies that c1(V ) is orthogonal to every other column of V . This property also holds 

for c1(Z) and the columns of Z. Recall the notation ξ = ie1 and η = c1(Z)
‖c1(Z)|‖ =

s0
t0

c1(V )
‖ s0

t0
c1(V )‖ = c1(V )

‖c1(V )‖ , and 

consider

ξ + η = ie1 + c1(Z)
‖c1(Z)‖ = ie1 + c1(V )

‖c1(V )‖ ∈ H.

A direct computation shows that ξ + η is an eigenvector of Z and V of the eigenvalue i‖Z‖ = i‖c1(Z)‖ =
i s0t0 ‖c1(V )‖ = i s0t0 ‖V ‖ (see for example the proof of Theorem 2 in [4] for the self-adjoint case). The previous 
comments imply that

eD(ξ + η) = e−s0V et0Z(ξ + η) = e−i
s20
t0

‖V ‖eit0‖Z‖(ξ + η) = ei(t0−s0)‖Z‖(ξ + η)

where in the last equality we used ‖V ‖ = t0
s0
‖Z‖ and the series expansion of the exponentials. Then, using 

(5.10) we write

eD(ξ + η) = e−Diag(s0V )+Diag(t0Z)(ξ + η) = ei(t0−s0)‖Z‖(ξ + η). (5.12)

Therefore, considering the equality in each entry of (5.12) we obtain

e(−s0V +t0Z)j,j (ξ + η)j = ei(t0−s0)‖Z‖(ξ + η)j

for all j ∈ N. The fact that (ξ + η)j �= 0 for all j ∈ N implies that e(−s0V +t0Z)j,j = ei(t0−s0)‖Z‖ for every 

j. Since we suppose that t0 ∈
(
0, log 2

8‖Z‖

]
, then the exponent (−s0V + t0Z)j,j is small enough and we can 

conclude that
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(−s0V + t0Z)j,j = −s0Vj,j + t0(Z)j,j = i(t0 − s0)‖Z‖

for all j ∈ N. But this is a contradiction since we suppose Diag(V ) = d + iθI, with d ∈ K(H)ah, θ ∈ R, and 
we know that Diag(Z) has more than one (not null) limit. Therefore, a minimal operator V ∈ (K + C)ah
cannot form a curve δ(t) = etV be−tV that crosses γ for t > 0 in a certain small enough neighborhood 
of b. �
Corollary 5.10. If we consider Z2 as defined in (4.2) for every neighborhood Xb of b in Ob there exist elements 
(et0Z2be−t0Z2) ∈ Xb such that there is not any short curve of the form δ(t) = etV be−tV with V ∈ (K+C)ah
that joins b with et0Z2be−t0Z2 . In fact, this is true for etZ2be−tZ2 , for every t in certain interval.

Proof. Observe that the operator Z2 satisfies every assumption needed by the operator Z in Theorem 5.9. 
Then the proof is a direct application of the previous theorem. �
Remark 5.11. Note that the situation mentioned in the previous corollary applies to the geodesic neigh-
borhood Wb obtained in Theorem 5.4 even when in that case every element of Wb is reached by a short 
curve.

6. Appendix

In this section we include various results concerning minimal anti-Hermitian operators in B(H)ah.

Lemma 6.1. For a given fixed orthonormal basis of H, let V ∈ B(H)ah be such that there exists j0 ∈ N that 
satisfies ‖V ‖ = ‖cj0(V )‖ (where cj(V ) is the jth column of the corresponding matrix representation of V in 
the fixed basis). Then

cj0(V ) ⊥ cj(V ), ∀j �= j0. (6.1)

If (cj0(V ))j0 = Vj0,j0 = 0 then V is a minimal operator.
Moreover, if cj0(V )j = Vj,j0 �= 0 for all j �= j0, then V has a unique minimizing diagonal defined by

Vj,j = −

〈
cj(V )ǰ , cj0(V )ǰ

〉
Vj,j0

, for j �= j0 (6.2)

where ck(X)ľ ∈ H � gen{el} is the element obtained after taking off the lth entry of ck(X) ∈ H.

Proof. Note that we can suppose that j0 = 1 to simplify the notation. Similar considerations could be done 
for the jth0 column.

In the matrix representation corresponding to the fixed orthonormal basis {ej}j∈N , we can consider

x = cos(t)e1 + sin(t)ej , for j �= 1.

Observe that ‖x‖ = 1, and then it must hold ‖V x‖ � ‖V ‖. Let us consider f : R → R such that

f(t) = ‖V (cos(t)e1 + sin(t)ej)‖2 = ‖ cos(t)V (e1) + sin(t)V (ej)‖2

= ‖ cos(t)c1(V ) + sin(t)cj(V )‖2

= 〈cos(t)c1(V ) + sin(t)cj(V ), cos(t)c1(V ) + sin(t)cj(V )〉
= cos2(t)‖c (V )‖2 + sin2(t)‖c (V )‖2 + 2 cos(t) sin(t) Re〈c (V ), c (V )〉.

(6.3)
1 j 1 j
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Then

f ′(t) = − 2 sin(t) cos(t)‖c1(V )‖2 + 2 sin(t) cos(t)‖cj(V )‖2+

+ 2
(
cos(t)2 − sin(t)2

)
Re〈c1(V ), cj(V )〉

= sin(2t)
(
‖cj‖2 − ‖c1‖2)+ 2 cos(2t) Re〈c1(V ), cj(V )〉.

Then, if Re〈c1(V ), cj(V )〉 > 0

f ′(0) = 2Re〈c1(V ), cj(V )〉 > 0 and f(0) = ‖c1(V )‖2

and then f ′(t1) > 0 for some t1 > 0, which implies that f(t1) > ‖c1(V )‖2, a contradiction.
On the other hand, if Re〈c1(V ), cj(V )〉 < 0

f ′(0) = 2Re〈c1(V ), cj(V )〉 < 0 and f(0) = ‖c1(V )‖2

and then f ′(t2) < 0 for some t2 < 0, which implies that f(t2) > ‖c1(V )‖2, a contradiction.
Therefore it must be Re〈c1(V ), cj(V )〉 = 0.
Now consider z = cos(t)e1 + i sin(t)ej ∈ H, that also satisfies ‖z‖ = 1. Then following the steps we 

used in the case of x = cos(t)e1 + sin(t)ej but using z, it can be proved that 0 = Re(−i)〈c1(V ), cj(V )〉 =
Im〈c1(V ), cj(V )〉.

In order to prove the last part of the lemma observe that

(1) as proved in the first part of this lemma, c1(V ) ⊥ cj(V ) for all j �= 1,
(2) and the assumptions

(a) c1(V )1 = V1,1 = 0,
(b) c1(V )j = Vj,1 �= 0 for j �= 1
(c) and the equality ‖V ‖ = c1(V )

Then the proof of the minimality of V follows applying Theorem 2.2 from [1] substituting A with B(H), 
B with D(B(H)), ρ with the identity, ξ with i e1 and Z with V . Note that we only need assumptions (1), 
(2)(a) and (2)(c) to prove that

V 2(i e1) = −‖V ‖2i e1 and that 〈V (i e1), D(i e1)〉 = 〈i c1(V ), iD1,1〉 = 0

in order to fulfill the assumptions of Theorem 2.2 from [1].
The equality (6.2) follows after the condition c1(V ) ⊥ cj(V ) for j �= 1 and the fact that c1(V )j = Vj,1 �= 0

for those j.
Moreover, if we consider V +D, for D �= 0, and D1,1 �= 0, follows that ‖c1(V +D)‖ = ‖c1(V ) +D1,1e1‖ >

‖c1(V )‖ = ‖V ‖ and therefore V +D cannot be minimal. Now suppose D1,1 = 0. Direct computations show 
that ∥∥∥∥(V + D) c1(V )

‖c1(V )‖

∥∥∥∥ = 1
‖c1(V )‖‖V c1(V ) + Dc1(V )‖ = 1

‖c1(V )‖
∥∥−‖c1(V )‖2e1 + Dc1(V )

∥∥
=
∥∥∥∥−‖c1(V )‖e1 + 1

‖c1(V )‖Dc1(V )
∥∥∥∥ > ‖c1(V )‖ = ‖V ‖.

(6.4)

In the previous strict inequality we have used (2)(a), (2)(b), D �= 0 and D1,1 = 0.
Then ‖V + D‖ > ‖V ‖ for D �= 0, which implies that the diagonal defined in (6.2) is the only possible 

minimizing diagonal of V . �
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Another way to prove equation (6.1) of the first part of the previous Lemma 6.1 is using Corollary 6.3 of 
the following theorem.

Theorem 6.2 (Sain, [9]). Let H1, H2 be Hilbert spaces and T ∈ B(H1, H2). Given any x ∈ H1, ‖Tx‖ = ‖T‖
if and only if the following two conditions are satisfied:

i) 〈x, y〉 = 0 implies that 〈Tx, Ty〉 = 0,
ii) sup{‖Ty‖ : ‖y‖ = 1, 〈x, y〉 = 0} � ‖Tx‖.

Corollary 6.3. Consider H = H1 = H2 and V ∈ B(H)ah. Then there exists j0 ∈ N such that ‖V ‖ =
‖V (ej0)‖ = ‖cj0(V )‖, if and only if

i) 〈ej0 , ej〉 = 0 implies that 〈V ej0 , V ej〉 = 〈cj0(V ), cj(V )〉 = 0 for each j ∈ N, j �= j0,
ii) sup{‖cj(V )‖ : j ∈ N} � ‖cj0(V )‖.

Proof. The proof is a direct consequence of Theorem 6.2 after observing that in item i) of the corollary is 
equivalent to say that 〈ej0 , y〉 = 0 implies that 〈V ej0 , V y〉 = 0 for any y ∈ H. �
References

[1] E. Andruchow, L.E. Mata-Lorenzo, A. Mendoza, L. Recht, A. Varela, Minimal matrices and the corresponding minimal 
curves on flag manifolds in low dimension, Linear Algebra Appl. 430 (8–9) (2009) 1906–1928.

[2] D. Beltiţă, Smooth Homogeneous Structures in Operator Theory, Chapman & Hall/CRC Monographs and Surveys in 
Pure and Applied Mathematics, vol. 137, Chapman & Hall/CRC, Boca Raton, FL, 2006.

[3] T. Bottazzi, A. Varela, Best approximation by diagonal compact operators, Linear Algebra Appl. 439 (10) (2013) 
3044–3056.

[4] T. Bottazzi, A. Varela, Minimal length curves in unitary orbits of a Hermitian compact operator, Differ. Geom. Appl. 45 
(2016) 1–22.

[5] T. Bottazzi, A. Varela, Unitary subgroups and orbits of compact self-adjoint operators, Stud. Math. 238 (2) (2017) 155–176.
[6] E. Chiumiento, On normal operator logarithms, Linear Algebra Appl. 439 (2) (2013) 455–462.
[7] C.E. Durán, L.E. Mata-Lorenzo, L. Recht, Metric geometry in homogeneous spaces of the unitary group of a C∗-algebra. 

I. Minimal curves, Adv. Math. 184 (2) (2004) 342–366.
[8] C.E. Durán, L.E. Mata-Lorenzo, L. Recht, Metric geometry in homogeneous spaces of the unitary group of a C∗-algebra. 

II. Geodesics joining fixed endpoints, Integral Equ. Oper. Theory 53 (1) (2005) 33–50.
[9] D. Sain, On extreme contractions and the norm attainment set of a bounded linear operator, ArXiv, 2017.

[10] V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, vol. 102, Springer Science & Business Media, 
2013.

http://refhub.elsevier.com/S0926-2245(21)00062-0/bib19353C803A6211D4756F636056E89513s1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bib19353C803A6211D4756F636056E89513s1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bibB8A88EDC30388574EFFDA926B7D388DAs1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bibB8A88EDC30388574EFFDA926B7D388DAs1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bib254B4CCE7CABAF50715AE62A567DA635s1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bib254B4CCE7CABAF50715AE62A567DA635s1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bib6F34549A4FDA6067CCDA6FB811CA9EEDs1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bib6F34549A4FDA6067CCDA6FB811CA9EEDs1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bib7B1CCC45C9838BF00995DFC31DD2295As1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bib716BB23A08383531B55A3256CFD08D95s1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bib271BC2BD210690449A230B9B326BB41Es1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bib271BC2BD210690449A230B9B326BB41Es1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bib95E30D18ECA2DEA63C9D4BF2819569B4s1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bib95E30D18ECA2DEA63C9D4BF2819569B4s1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bib5669CADB70382FEA8E4E72B69591C62Cs1
http://refhub.elsevier.com/S0926-2245(21)00062-0/bib5669CADB70382FEA8E4E72B69591C62Cs1

	Geodesic neighborhoods in unitary orbits of self-adjoint operators of K+C
	1 Introduction
	2 Preliminaries
	3 The homogeneous unitary orbit of a self-adjoint compact operator
	4 A short curve in Ob obtained acting with a minimal operator not belonging to (K+C)ah/D(K+C)ah
	5 Neighborhoods of short curves defined by minimal vectors in UK+C/UD(K+C)
	6 Appendix
	References


