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Abstract—In this paper we present a novel algorithm termed
Multi-Pulse Processing (MPP) for improving mean Doppler
velocity estimation in weather radar applications. It can be used
for both staggered pulse repetition time (PRT) and uniform-PRT
sequences. Essentially, MPP consists of finding a particular zero
of a functional composed of data autocorrelation estimates at
multiple lags. To select the proper zero an initial Doppler velocity
estimate is required. Therefore, MPP can be considered as an
estimation refinement stage. Its advantage lies in the fact that
it uses the complete information contained in the radar signal
autocorrelation. After a theoretical analysis, we compare the
performance of MPP against other well-established methods of
similar complexity and the Cramér-Rao lower bound, by means
of Monte-Carlo simulations using synthetic data. We show that
the proposed estimator offers the lowest root-mean-square error
(RMSE) at low SNR situations for a wide range of spectral
widths. Finally, we evaluate the MPP algorithm performance
using real data measured by RMA Argentinian weather radar.
The results of tests performed are consistent with those of Monte-
Carlo simulations and validate the proposed method.

Index Terms—Doppler velocity estimation, Doppler weather
radar, signal processing, spectral analysis.

I. INTRODUCTION

Spectral moments estimation is one of the main objectives in

weather radar signal processing, since these are closely linked

to the characteristics of the observed meteorological targets.

In particular, the first order moment normalized with respect

to the zeroth moment is related to the mean radial motion of

the scatterers present in the radar resolution volume and it is

commonly called mean velocity, vm, or mean frequency, fm,

both related by a simple change of scale [1].

There are a wide variety of proposed mean velocity estima-

tors [2]–[12]. One of the simplest is the Spectral Processing

(SP), which consists in the evaluation of the mean frequency,

by definition, once the signal spectrum has been estimated. The

Fast-Fourier Transform (FFT) makes this approach attractive

due to its low computational load. However, the SP estimator

is biased as a consequence of the finite FFT resolution [2].

Pulse-Pair Processing (PPP) is, probably, the most common

approach to estimate the mean velocity. The PPP velocity
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estimator is proportional to the argument of the first auto-

correlation lag estimate, R̂(Ts), being Ts the pulse repetition

time (PRT), where R̂(Ts) is computed from contiguous pulse-

pairs. This approach also has a low computational load, but

its performance degrades significantly at low signal-to-noise

ratios (SNR), below 10 dB, and when meteorological target

spectral width increases [3].

There are alternatives that combine autocorrelation esti-

mates at different lags, R̂(kTs), k ∈ N, in order to improve

PPP performance. Two approaches are the Poly-PPP and

the Periodogram Maximization estimators [2]. However, none

achieves a consistent better performance than PPP [2]. Unlike

PPP, which uses only partial autocorrelation information, these

methods utilize the complete information contained in the

autocorrelation but suffer from the drawback that the auto-

correlation estimates for higher lags are poor.

The Band Limited (BL) estimator proposed in [5] can be

viewed as a weighted sum of the R̂(kTs), where the weights

are the impulse response coefficients of the interpolation filter.

The BL estimator outperforms PPP when the spectrum is

asymmetric or when it has a medium to large spectral width.

The Multi-Lag Estimator also uses the available autocorrela-

tion estimates at multiple lags to fit a Gaussian function in

order to estimate spectral moments and polarimetric parame-

ters [6].

On the other hand, the methods based on optimal estimation

criteria such as Maximum Likelihood [7] and subspace-based

methods [8] can reach a very good performance, but their high

computational cost excludes them from real-time applications.

Finally, Adaptive Filtering techniques have been also proposed

for Doppler spectral moment estimation. Based on a first order

complex autoregressive series as the signal model, in [9] the

authors deduce an optimal adaptive filter in terms of maximum

a posteriori probability. However, its performance degrades

significantly when the number of data samples is small and in

a practical situation, where having more than 64 samples is

uncommon, it is not recommended.

In practice, weather radars suffer from range ambiguity

when short PRT is used to increase the unambiguous Doppler

interval. Staggered-PRT techniques enable increasing the un-

ambiguous velocity without degrading the unambiguous range

[13]. Although there are different PRTs combinations [14],

a two-PRT system is often used, where the pulse interval

alternates between PRTs T1 and T2. The unambiguous velocity

for this scheme depends on Tu = T2−T1 and it is shown that

as the ratio κ = T1/T2 is closer to one, the velocity estimation

error increases [10]. For this reason, the use of T1 = 2Tu and

T2 = 3Tu is often the chosen solution to this trade-off.
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A PPP extension for the staggered strategy (SPPP) is

proposed in [10], where the mean velocity estimator is propor-

tional to the argument difference of R̂(T1) and R̂(T2). It works

on the whole unambiguous range but since it is computed as

two estimators subtraction, in general, its variance is high.

In the Magnitude Deconvolution (MD) method [11] the

staggered-PRT sequence is interpreted as a sequence uniformly

sampled at Tu, that has zeros in the missing samples. The

Fourier transform of the resulting sequence has replicas of

the signal spectrum in some fractions of the Nyquist interval,

whose number and positions depends on κ. When the spectrum

is narrow enough that these replicas do not overlap, the MD

strategy allows to reconstruct the original spectrum magnitude

from which R̂(Tu) can be obtained. Hence, the mean velocity

is computed using PPP through R̂(Tu). This method gives

reasonably good velocity estimates even if the spectra are

slightly wider and the replicas slightly overlap.

Finally, the Dealising Method (DA) [12] computes two

PPP estimates v̂1 from R̂(T1) and v̂2 from R̂(T2). Since

T2 > T1 > Tu their respective unambiguous velocities follow

va2 < va1 < va and therefore v̂1 and v̂2 could be aliased.

Admitting one-time aliases, only v1 and (v1±va1) may belong

to (−va, va). In the same way, only v2 and (v2 ± va2) may

belong to (−va, va). There is only one value that is common to

both sets, and this is the right velocity estimate. Since T1 < T2

the variance of v̂1 is lower than the variance of v̂2. Thus, v̂2 is

used only to decide between the values v̂1, v̂1−va1 or v̂1+va1,

and this is the final output of the method. DA is slightly more

complex than SPPP, however gives more accurate velocity

estimates than the former staggered-PRT velocity estimators

for a wide range of spectral widths.

In this paper we present an algorithm termed Multi-Pulse

Processing (MPP) for spectrum mean frequency estimation

in weather radar applications. MPP uses the complete in-

formation contained in the radar signal autocorrelation. It

is based on a zero-finding of a functional that depends on

multiple autocorrelation lags. To select the proper zero an

initial estimate is required. Therefore MPP can be considered

as an estimation refinement stage. The rest of the paper is

organised as follows. In Section II, we introduce the problem

statement and in Section III we derive the MPP algorithm

steps. While MPP can be used for both uniform and staggered

PRT sequences, we focus the analysis in staggered-PRT oper-

ation. We present numerical simulations results in Section IV

including a performance comparison with the methods SPPP,

MD and DA, in different SNR situations. In Section V MPP,

SPPP and DA algorithms are tested on weather radar data

to evaluate their performance in a real situation. Finally, we

present conclusions in Section VI.

II. PROBLEM FORMULATION

The Wiener-Khinchin theorem states that the autocorrelation

function of a random process at lag Ts, R(Ts), can be written

in terms of its power spectral density (PSD), S(f), through

the inverse Fourier transform [15]

R(Ts) =

∫ 1/2Ts

−1/2Ts

S(f)ej2πfTsdf, (1)

where Ts is the sample time interval, or the PRT in Doppler

weather radar.

PPP assumes that the Doppler spectrum S(f) consists

only of a single peak due to backscatter from a weather

phenomenon and it is symmetric with respect to the mean

frequency fm [1]. Then if we express (1) as

R(Ts) = ej2πfmTs

∫ 1/2Ts

−1/2Ts

S(f)ej2π(f−fm)Tsdf, (2)

the integral is real and fm can be determined from the

argument, 2πfmTs, of R(Ts). This is owing to the fact that

the imaginary part of the integral in (2) is zero, i.e.

∫ 1/2Ts

−1/2Ts

S(f)sin(2π(f − fm)Ts)df = 0. (3)

However, under the hypothesis that S(f) is symmetric with

respect to its mean frequency, the condition (3) is satisfied

by any function G(f), odd and periodic with period 1/Ts,

not only by sin(2πfTs). Then, it is possible to define the

functional

J(fd) =

∫ 1/2Ts

−1/2Ts

S(f)G(f − fd)df, (4)

that allows to calculate fm such that J(fm) = 0.

III. ALGORITHM

Since G(f) is a periodic function, it can be written in terms

of its Fourier series [16]

G(f) =
∞
∑

k=−∞

gke
j2πkfTs , (5)

where gk are the Fourier coefficients.

Replacing the expression (5) of G(f) in (4) it is possible

to rewrite the functional as

J(fd) =
∞
∑

k=−∞

gkR(kTs)e
−j2πkfdTs . (6)

Although (6) is equivalent to (4), it is a more convenient

form to solve the problem. Its time domain formulation

avoids evaluation of the integral and computation of the PSD,

allowing its application to any PRT strategy.

Then, the proposed MPP algorithm to estimate fm consists

in zero-finding of the real function J(fd) expressed in (6).

A. Practical Aspects

In practice, we have estimates of the autocorrelation

function at a finite number of lags, R̂(kTs) for k =
−K, ..., 0, ...,K . Then the spectrum mean frequency estimate,

f̂m, is obtained from

J(f̂m) =
K
∑

k=−K

gkR̂(kTs)e
−j2πkf̂mTs = 0. (7)

The problem defined by (7) does not have analytical solution

and must be solved numerically [17].
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Figure 1. (a) Test functions. (b) Fourier coefficients of the MPP test function.
(c) Functionals.

B. Choice of Test Function G(f)

The algorithm depends on the value of the coefficients gk,

which are determined by the shape of the test function G(f).
To our knowledge, there is not a unique optimal test function

for all meteorological targets. However, we observe that there

are some characteristics of the test function that improve the

estimate accuracy.

Fig. 1(a) shows an example of a test function G(f) together

with the PPP test function, i.e. sin(2π(f−fm)Ts), and a PSD,

S(f), that represents a weather target with mean frequency

0.1fs and spectrum width 0.075fs, where fs = 1/Ts. Note

that if the support of G(f) is similar to the support of S(f),
then the functional zero depends only on the weather spectrum.

It reduces the mean velocity estimation error when there are

other signals added to the weather component, like noise or

ground clutter. However, to take advantage of this fact, a priori

knowledge of the spectrum width is required.

In Fig. 1(b) we present the Fourier coefficients of this test

function example. It should be noted that the autocorrelation
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Figure 2. MPP for Staggered-PRT Sequences. (a) Autocorrelation. (b) Test
function Fourier coefficients.

estimation error increases as the lags kTs increase and this

error depends on the number of pulses in each coherent

processing interval (CPI). In weather radar it is common to

define the CPI as the number of pulses included in the antenna

beam-width which for our datasets varies between 32 and 64

pulses. Then, considering beyond 6 or 7 autocorrelation lags

the error is significant and also the autocorrelation for a typical

meteorological target tends to zero, as can be seen in Fig. 2(a).

Since the Fourier coefficients of the test function weight the

autocorrelation estimates, R̂(kTs), in the MPP functional (7),

it is desirable to avoid high values of gk for large k, i.e. it

is recommended that G(f) does not have fast variations. The

number of coefficients must be also sufficient to correctly rep-

resent the test function. Then, for the test functions presented

along the work, we have chosen the use of 10 coefficients

as a balance between these conditioning factors. Finally, Fig.

1(c) shows the MPP and the PPP functionals computed from

G(f − fm) and sin(2π(f − fm)Ts), respectively.

C. Staggered-PRT Sequences

Without loss of generality, we restrict our analysis to a two-

PRT system with κ = T1/T2 = 2/3. It is possible to construct

an equivalent uniform sequence with PRT Tu, such that T1 =
2Tu and T2 = 3Tu, where zero values are assigned to the

missing samples.

Fig. 2(a) shows the theoretical autocorrelation modulus for

a weather target with mean frequency 0.2fs, spectrum width

0.075fs and power 1 [AU], where fs = 1/Tu, together with an

estimate of this autocorrelation computed using a 64-samples

simulated staggered random sequence, with κ = 2/3 [18].
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Figure 3. MPP for Staggered-PRT Sequences. (a) Test function. (b) Func-
tional.

The zero values of the autocorrelation estimate at lags Tu,

4Tu, 6Tu and 9Tu correspond to missing lags. Forcing the

Fourier coefficients to be zero in the design of the test function,

it is possible to control which autocorrelation lags do not

contribute to the functional (7). We can then design the test

function so that the gk are zero for these missing lags, such

as shown in Fig. 2(b).

Fig. 3(a) shows the test function corresponding to the

Fourier coefficients of Fig. 2(b). Note that it has two positive

peaks and two negative peaks. This unwanted behaviour is

due to the null in the fundamental harmonic and it produces

additional zeros that do not correspond to weather target

mean frequency. In Fig. 3(b) the theoretical and estimated

functionals for the staggered-PRT sequences are shown. The

functional estimate is computed using the autocorrelation

estimate presented in Fig. 2(a). Note that only the zero at 0.2fs
is valid, the others are consequence of the test function shape.

Hence, it is not enough to find the zeros of the functional to

determine the mean velocity estimate, the algorithm requires

a procedure to choose the right zero.

D. Function Design for Staggered-PRT

The test function design is important for the MPP algorithm.

It depends on the weather radar operation strategy and it would

be interesting to study the optimum function design subject

to the radar return signal composition. For the test function,

G(f), used throughout the work, we propose to combine three

basic periodic functions, with period 1/Tu, Ga(f), Gb(f) and

Gc(f), such that G(f) = Ga(f)+Gb(f)+Gc(f) results also
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Figure 4. MPP algorithm procedure.

a periodic function with period 1/Tu. We propose defining

Ga1(f) = Aasin(2πfTa) − 0.5/Ta < f 6 0.5/Ta, (8)

Gb1(f) =
Ab√
2πσb

[

e
−

(f+µb)
2

2σ2
b − e

−
(f−µb)

2

2σ2
b

]

, (9)

Gc1(f) = Ac

[

sinc2
(

f − µc

σc

)

− sinc2
(

f + µc

σc

)]

, (10)

where Ga1(f), Gb1(f) and Gc1(f) are the central periods

of the functions Ga(f), Gb(f) and Gc(f), respectively. The

choice of these functions is not unique and it is based on

having sufficient degrees of freedom to force to zero the

Fourier coefficients gk for the missing lags when a staggered-

PRT with κ = 2/3 is used. Then, the parameters of the

functions, Aa, Ta, Ab, µb, σb, Ac, µc and σc, are chosen

to zero the Fourier coefficients that multiply the missing lags

of the autocorrelation function. Thus, considering the first ten

lags, for κ = 2/3 the conditions to compute the parameters

are gk = ak + bk + ck = 0, for k = 1, 4, 6, 9, being gk, ak, bk
and ck the Fourier coefficients of G(f), Ga(f), Gb(f), and

Gc(f), respectively. The values of the test function parameters

that satisfy the required conditions are the following: Aa = 1,

Ta/Tu = 3; AbTu = −1/12, µbTu = 1/6, σbTu = 1/40;

Ac = −6/5, µcTu = 1/4 and σcTu = 3/25.

E. Multi-Pulse Processing Steps

The functional ambiguity depends on the test function, so

it can also occur for uniform-PRT sequences. To deal with

this issue, we propose to search the true zero around an initial

estimate obtained through a primary method, e.g. PPP.

In summary, the steps of the MPP algorithm are:

1) Define a test function and evaluate its first K Fourier

coefficients, gk.

2) Estimate K lags of the autocorrelation, R̂(kTs).
3) Compute the functional J(fd).
4) Evaluate an estimate of the mean frequency f̂0 by means

of a primary method.

5) Define the initial zero search interval as 40% of the test

function central portion, around the initial estimate f̂0.

6) Verify that the functional at the interval lowest and

highest frequencies is positive and negative, respectively.

7) If the condition of step 6) is satisfied, search the func-

tional zero in the defined interval and accept the result

as the mean frequency estimate f̂m.
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8) If the condition of step 6) is not satisfied, increase the

interval, maximum six times, in steps of 5% of the

function central portion until the condition of step 6) is

satisfied. If the condition of step 6) is satisfied, do step

7). Otherwise, do nothing and accept the initial estimate

as the mean frequency estimate f̂m.

In Fig. 4 the steps 4) to 6) are schematically represented. We

define the central portion of the test function as the interval

between the central negative and positive peaks, as can be seen

in Fig. 3(a). Note that the condition of the step 6) applies when

the function within the central portion is increasing. If it is

decreasing, the condition should be inverted. It is important

to remark that as usual in any numerical method [17] there

is not a unique way to define the zero search interval. We

choose to limit the search interval to a fraction of the test

function central portion defined as above to prevent as much

as possible including a non-correct zero, i.e. generated by the

shape of the test function.

IV. NUMERICAL SIMULATIONS

A series of Monte-Carlo simulations has been conducted in

order to verify the correct operation of the algorithm and to

compare its performance with other mean velocity estimation

methods. While MPP can be used for uniform-PRT, we focus

the analysis in staggered-PRT operation. For the case of

uniform-PRT and the proposed test functions MPP presents

a performance similar to PPP.

A 10-cm wavelength radar is assumed, with a basic sam-

pling period of Tu = 0.5 ms and a ratio κ = 2/3, which

gives the staggered PRTs T1 = 1 ms and T2 = 1.5 ms.

The signal model consists of a Gaussian random sequence

composed of a Gaussian-shaped PSD meteorological target

plus white noise [18]. We have performed studies that involve

computing the statistic of errors and execution times, varying

the primary method, the SNR and the spectral width. For each

setting of these parameters we have generated 10000 different

runs of 64-samples length data records. In all situations the

MPP algorithm uses the test function derived in Section III-D

and Newton’s method for zero-finding [17]. We have set the

zero-finding tolerance to 10−7 as a good balance between the

expected number of iterations and the estimate error. With this

value we observe that on average the number of iterations has

been between 3 and 4 for every primary method, every SNR

and every spectral width tested.

In addition to the MPP algorithm, we have tested the pulse-

pair processing method for staggered sequences (SPPP) [10];

the velocity estimation using magnitude deconvolution (MD)

[11]; and the velocity estimation from R̂(T1) and dealiasing

from both R̂(T1) and R̂(T2) (DA) [12].

Fig. 5(a) shows the estimation root-mean-square error

(RMSE) of the estimates for each method, as a function of the

SNR for 4 m/s of spectrum width. The result and the spectrum

width are presented in velocity terms, making use of the

relation v = −λf/2, being λ the wavelength, v the Doppler

velocity and f the Doppler frequency. For comparison we have

included the exact Cramér-Rao bound (CRB) obtained for the

signal model used [19]. The MPP algorithm is presented using
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Figure 5. (a) Velocity estimation RMSE. (b) Percentage of interval definition
successfully. (c) Average execution time.

SPPP, MD and DA as the primary methods to obtain the initial

estimate in step 4) (these will be referred as MPP with SPPP,

MD or DA, respectively).

Although the estimation biases are not plotted, it is impor-

tant to mention that these biases are very small relative to the

corresponding RMSE and the CRB. They are below the 5%

of the CRB for most SNR values and below 10% of the CRB

for all the SNR values. From a practical point of view all the

estimators can be considered unbiased.

Fig. 5(a) shows that the SPPP estimator presents on average

the worst performance of all methods, with its RMSE far

from the CRB across the range of analyzed SNR values.

As explained in [12] this is a consequence of the fact that
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the SPPP result involves the difference in phases of two lag

autocorrelation estimates. The MD estimator shows the worst

performance for SNR values below 3 dB, attributable to the

increased influence of noise due to the spillover of its power

spectrum caused by non-uniform sampling aliases. However,

its RMSE decreases faster than that of SPPP as the SNR

increases and it is close to the CRB at a 10 dB of SNR. As

expected, the DA estimator shows a better performance than

SPPP and MD and its RMSE approximates the CRB faster

than these methods.

Regarding MPP, it always improves the performance of

the corresponding primary method. However, the performance

achieved depends on the primary method used, being MPP

with DA the estimator with lowest RMSE and closest to CRB,

in the analyzed SNR range. It is interesting to note that for

SNR values above 3 dB the RMSE of MPP with SPPP is lower

than the RMSE of DA and MPP with MD presents the same

behaviour for SNR values above 5 dB. This shows that MPP

achieves a significant improvement for a wide SNR range even

when the primary estimate is poor.

MPP algorithm defines a search interval and checks that

a zero is contained on this interval. If this process fails,

then MPP returns the primary estimate. Fig. 5(b) shows the

percentage of times that the interval definition is successful

for each primary method. Note that the results are directly

related to the quality of the primary estimate. For SNR of 0

dB MPP with DA defines a search interval the 99.89% of the

runs and for SNR of 3 dB or larger the 100% of the runs.

Instead, MPP with SPPP and MPP with MD define a search

interval the 91.46% and 89.75% of the runs, respectively, for

0 dB of SNR and they reach 100% for 7 dB of SNR. This

behaviour explains why in Fig. 5(a) the MD and MPP with

MD RMSE curves are close for low SNR. Inaccurate primary

estimates prevent to define a search interval and they have a

great influence in the average errors of both methods.

As the MPP algorithm is iterative, the exact calculation of

the number of operations required is difficult to find. To give

a complexity notion we have evaluated the average runtime

for all the methods using the same platform, a PC with Intel

Core i7-3770 (3.4 GHz × 4) processor and 16 GB of RAM.

In Fig. 5(c) the 64–samples CPI average execution times for

MPP using the different primary methods are presented. These

values do not take into account the time required to obtain

the primary estimate. MD, DA and SPPP are not iterative,

thus their execution times do not depend on SNR and their

average execution times are 0.13 ms, 0.05 ms and 0.03 ms,

respectively. Then, in situations of medium or low SNR, MPP

can provide a significant improvement in velocity estimation

performance, with an increase in computational load. In these

situations its use is recommended. Although the increase in

computational load is not prohibitive, its use in high SNR

situations may not be justified in practical terms.

Fig. 6 shows the RMSE of the estimates for each method

and the CRB, as a function of the spectrum width, for SNR

of 5 dB and 15 dB. In this case, the MPP algorithm uses only

DA as the primary method because in the previous analysis it

presented the best performance. Again, biases are not plotted,

but it is important to mention that they are low for all methods.
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Figure 6. Velocity estimation RMSE. (a) SNR of 5 dB. (b) SNR of 15 dB.

In the spectral width range from 1 to 7 m/s, the biases of MPP

and DA are below 5% of the CRB and the biases of SPPP and

MD are below 10% of the CRB.

The SPPP estimator has the largest RMSE in the tested sit-

uations. While the MD estimator presents a good performance

for an SNR of 15 dB and spectrum widths below 5 m/s, for

an SNR of 5 dB its performance is not good for any spectrum

width.

Finally, MPP and DA present the best performance among

the analyzed methods. For a 15 dB SNR, the performance of

both methods are similar, with MPP being slightly better than

DA for narrow spectral widths. However, for a 5 dB SNR, the

improvement in performance obtained using MPP with respect

to using DA becomes appreciable. Note that the DA RMSE

moves away from the CRB while the MPP RMSE is close to

the CRB for spectrum widths between 1 m/s and 6 m/s.

V. TESTING ON REAL WEATHER RADAR DATA

In this section, the MPP algorithm is tested on real weather

radar data to evaluate its performance in a realistic scenario.

The measurements were collected by the RMA-12 Argentinian

weather radar, located in San Carlos de Bariloche city. RMA-

12 is a C-band polarimetric radar, designed and developed

by INVAP. Specifically, the data were recorded on August 18,

2018, under intense rain meteorological conditions. The shown

results correspond to a complete sweep of the horizontal

polarization (HH), using a staggered-PRT with κ = 2/3 and

an unambiguous velocity of 25 m/s, at 7.2 degrees elevation
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Figure 7. Reflectivity of the real weather radar data.

angle, ensuring that there were no ground clutter components

present. Fig. 7 shows the reflectivity plan position indicator

(PPI) of the data.

Figs. 8(a), 8(b) and 8(c) show the PPI displays of the

Doppler velocity estimation obtained from the data set with

the SPPP, DA and MPP methods, respectively. The MPP

algorithm uses DA as the primary estimate. In all of the PPI

displays a central zone can be recognized, where the velocity

changes are smooth. This zone corresponds to a storm. In

the corners (especially on the right side) the velocity values

present a random behaviour. This second zone corresponds

mainly to noise, without the presence of any appreciable

weather signal component. Note, that the described behaviour

is consistent with the reflectivity data presented in Fig. 7.

In the storm zone, an approximately vertical center strip of

zero-velocity (in gray tone) is observed, to the right of which

the velocity is positive and increases in magnitude (dark red

tones to light red tones) as the azimuth tends to 90◦, while

to the left of the strip the velocity is negative and increases

in magnitude (dark green tones to light green tones) as the

azimuth tends to −90◦. The foregoing can be interpreted as

the storm moving above the radar in approximately west-to-

east direction, where the changes in magnitude as the azimuth

varies correspond to the projection of the wind speed in the

direction of observation.

Note from Fig. 8(a) that the SPPP estimates present more

dispersion than the estimates obtained with the other methods.

Graphically, this effect appears as less defined edges between

regions of different velocity. While it occurs throughout the

PPI display, this can be seen clearly in the central vertical

strip in gray, where there is a greater color contrast.

On the other hand, DA and MPP estimates, Figs. 8(b)

and 8(c), show a similar behaviour. We evaluated the root-

mean-square (RMS) of the Difference of Velocity Estimates

(DVE) between DA and MPP and the RMS of DVE between

SPPP and MPP, obtaining 0.31 m/s and 2.29 m/s, respec-

tively, which quantitatively supports the former qualitative

description. These results are consistent with the Section IV

discussion, considering that even at ranges larger than 25 km,

the SNR is over 15 dB.

Due to the high SNR the DA and MPP methods present a

comparable performance. Given their theoretical performance,

it is useful to study their operation under adverse SNR

conditions. Since we do not have real radar datasets in this

situation, we artificially modified the available dataset in order

to degrade the SNR. The procedure steps are described below.

First, we estimate the noise power using radar range reso-

lution volumes that do not contain weather signal components

(mainly outside the ranges shown in Fig. 7) [20]. Then, we

estimate the SNR of each coherent processing interval (CPI)

in the storm zone. Assuming that the signal and the noise are

independent, we subtract the noise power to the total signal

power, and we divide the result by the noise power to obtain

the SNR estimate. Finally, in those CPI where the SNR is

greater than 5 dB we add synthetic noise with circularly-

symmetric normal distribution, whose variance is such that

the SNR of the resulting signal is 5 dB.

Using the modified dataset, that we call noisy, we estimate

the Doppler velocity by means of SPPP, DA and MPP. The

results are presented in Figs. 8(d), 8(e) and 8(f), respectively.

Note that the SPPP estimates present a great degradation

when the noisy dataset is used. The PPI display of Fig.

8(d) has even less defined edges between regions of different

velocity than Fig. 8(a). The degradation is moderate for the

DA estimates, Figs. 8(b) and 8(e), while it is practically

indistinguishable for the MPP estimates, Figs. 8(c) and 8(f).

To observe the noise degradation on DA and MPP velocity

estimates Figs. 9(a) and 9(b) show the DVE of DA before

and after noise addition (difference between Figs. 8(e) and

8(b)) and the DVE of MPP before and after noise addition

(difference of Figs. 8(f) and 8(c)), respectively. The white zone

of these figures corresponds to those CPIs where the original

data consists mainly of noise, i.e. those CPIs in which the

estimated SNR is lower than 5 dB and synthetic noise has not

been added.

These figures allow to notice the improved performance of

MPP over DA for low SNR. Note that at the center of the PPI

displays of Figs. 9(a) and 9(b) the differences are remarkable.

However, around the outer edges of the analyzed region it

is observed that both methods have a similar performance.

We conjecture that there are two possible reasons for this

behaviour. Since the SNR of the original signal is low in

this region (the SNR decreases with the range, because the

echo power decreases with the range while the noise power

remains almost constant) the estimates obtained there before

the noise addition already have high variance, which increases

the variance of the subtraction. In addition, the low SNR

impacts on the signal power estimation and it causes that the

final SNR, after the addition of noise, might be lower than the

intended 5 dB.

For a quantitative analysis of the results, we will consider

only those CPIs in which the original SNR is greater than

15 dB which ensures reliable estimates. In these CPIs we

can assume, based on the results of Section IV, that both

DA and MPP estimates over the original dataset will take

similar values. Since we are processing observational data

for which the true values are unknown, we consider the high

SNR estimates as a good approximation to the ground truth.

It is important to note that 84% of the CPIs to which noise

was added (no-white regions of Figs. 9(a) and 9(b)) meet this
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(a) (b) (c)

(d) (e) (f)

Figure 8. Doppler velocity estimation algorithms test on real weather radar data. (a) SPPP. (b) DA. (c) MPP with DA. (d) Noisy SPPP. (e) Noisy DA. (f)
Noisy MPP with DA.

condition and will be included in the analysis.

The RMS of the DVE before and after noise addition

(considering the CPIs that meet the previously discussed

condition) is equal to 1.11 m/s for DA and 0.79 m/s for

MPP, which quantitatively supports the previous qualitative

analysis. Even when for the real dataset we do not have a

reliable knowledge of the spectral width, the latter results are

also consistent with the separation between the performance

curves of both methods presented in Fig. 6(a).

To complete the analysis, Fig. 10 shows approximate proba-

bility density functions (PDF) of the DVEs, obtained by means

of histograms. The green curve corresponds to the PDF of

the DVE between DA and MPP before noise addition (i.e.

difference of Figs. 8(b) and 8(c)). This is a narrow PDF

concentrated around zero, which confirms that DA and MPP

estimates show a similar behaviour for high SNR. The blue

curve corresponds to the PDF of DVE of MPP before and

after noise addition (i.e. Fig. 9(b)). This PDF is very similar

to the previous one, which denotes that the MPP velocity

estimates obtained for the noisy dataset have a similar error to

the velocity estimates obtained with the same method for the

original dataset. The black curve corresponds to the PDF of

the DVE of DA before and after noise addition (i.e. Fig. 9(a)).

This PDF is centered around zero, but has a greater dispersion

than the previous PDFs. Then, unlike what happens with MPP,

the velocity estimates obtained for the noisy dataset using DA

have a greater error than those velocity estimates obtained

using DA for the original dataset. As expected, these results

are consistent with the analysis of Fig. 9. Finally, the red curve

corresponds to the PDF of the DVE between DA and MPP

after noise addition (i.e. difference of Figs. 8(e) and 8(f)). It

is also a wide PDF centered around zero, which denotes a

significant difference between DA and MPP estimates. The

comparison of this PDF with the green PDF and with the blue

PDF allows to appreciate the improvement of the MPP method

over DA.

VI. CONCLUSION

In this paper we present the novel Multi-Pulse Processing

algorithm for improving mean velocity estimation. Essentially,

MPP consists of the numerical optimization of a functional,

which is composed of data autocorrelation estimates at mul-

tiple lags. We introduce the theoretical formulation and we

derive the algorithm steps. It is worth pointing out that MPP

operates as a second Doppler velocity estimation stage, i.e. it

needs a seed that has to be obtained by means of a primary

method, which will be improved after applying MPP.

The method can be used for uniform-PRT sequences and

staggered-PRT sequences. However, the analysis performed is

focused on staggered-PRT sequences, because for uniform-

PRT the method does not show improvement over PPP. This
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(a)

(b)

Figure 9. DVE before and after noise addition. (a) DA. (b) MPP with DA.
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Figure 10. PDF estimates of the DVE.

is true for the set of test functions used, which consists of

combinations of the kernels presented on Section III-D, for

which no claim of optimality is done. The calculation of

optimal test functions for uniform-PRT and staggered-PRT

will be studied in the future. Note that we also restrict the

analysis to the PRT ratio κ = 2/3 because it is the most widely

used. If a different PRT ratio is used, the set of missing lags

of the estimated autocorrelation will be different. Thus, for

another value of κ, the parameters of the test function must

be derived by forcing to zero the Fourier coefficients of the

test function on the corresponding set of missing lags.

We evaluate the estimation bias and the RMSE versus SNR,

by means of Monte-Carlo simulations, considering three well

established primary methods of similar complexity: SPPP,

MD and DA. We observed that MPP always improves the

performance of the corresponding primary method over the

entire range of tested SNR values. We also observed that in

statistical terms, the quality of the initial estimate affects the

MPP final performance, so it is recommended to choose the

best available estimator for the first stage. For this reason, in

the following analysis we present only the results of MPP with

DA as the primary method.

Also, by means of Monte-Carlo simulations, we evaluate the

estimation bias and RMSE versus spectral width, considering

two representative values of SNR: 5 dB and 15 dB. We

show that for 5 dB of SNR, MPP with DA presents a better

performance than SPPP, MD and DA, i.e. the MPP RMSE is

close to the CRB while the RMSE of the other methods move

away from the CRB. On the other hand, for 15 dB of SNR,

MPP has little room for improvement over the other methods,

but still manages to give slightly better estimates. In this

last situation, MPP has similar performance to MD and DA

methods for a wide spectral width range, while SPPP presents

the worst performance. Hence, from a practical viewpoint,

the use of MPP is justified for low SNR as it implies an

additional computational cost. In the simulations we assume 64

pulses, however if the number of input data samples increases,

the autocorrelation estimation improves and, consequently, the

error in the velocity estimates is reduced for all methods and

especially for MPP.

Regarding bias, it is observed that their values remained

below 10% (below 5% in most cases) of the respective CRB

values, which allows us to say that the analyzed estimators are

unbiased in practical terms.

We also compare the performance of the MPP estimator,

using DA as primary estimate, with the SPPP and DA es-

timators using real weather radar data. We show that MPP

and DA outperform SPPP, but MPP and DA have a similar

performance because the SNR of the dataset is high. To study

the performance at lower SNR, we add synthetic noise to

the data, in order to get a 5 dB final SNR. In the case

of the SPPP estimator, its performance degrades drastically.

As expected, the MPP estimates present a lower dispersion

than DA. Consistently with numerical simulation results, the

MPP performance with the original dataset is similar to

the MPP performance with the modified dataset, improving

the DA primary estimates quality, especially, in the second

situation. The greatest advantage of MPP is its performance

in conditions of low weather data SNR.

The symmetric spectra assumption could be a limitation for

all the methods used in this work. A possible next step is to

study their performance when using them with asymmetrical

spectral data. However, it is necessary to find a representative

asymmetrical spectral model for meteorological targets. This

may be accomplished using for example autoregressive series.

Finally, it might be of interest to investigate the test function

design to reduce the velocity estimate ambiguity and also to

mitigate the effect of residual clutter after filtering when it

is present. Another future step is the study of test functions

that could present some advantage in the estimation, e.g.

desensitize the method with respect to the initial estimate.
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