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Abstract: The quantification of  carbon storage in vegetation biomass is a crucial factor in the estimation 
and mitigation of  CO2 emissions. Globally, arid and semi-arid regions are considered an important carbon 
sink. However, they have received limited attention and, therefore, it should be a priority to develop tools 
to quantify biomass at the local and regional scales. Individual plant variables, such as stem diameter and 
crown area, were reported to be good predictors of  individual plant weight. Stand-level variables, such as 
plant cover and mean height, are also easy-to-measure estimators of  above-ground biomass (AGB) in dry 
regions. In this study, we estimated the AGB in semi-arid woody vegetation in Northeast Patagonia, 
Argentina. We evaluated whether the AGB at the stand level can be estimated based on plant cover and to 
what extent the estimation accuracy can be improved by the inclusion of  other field-measured structure 
variables. We also evaluated whether remote sensing technologies can be used to reliably estimate and map 
the regional mean biomass. For this purpose, we analyzed the relationships between field-measured woody 
vegetation structure variables and AGB as well as LANDSAT TM-derived variables. We obtained a model-
based ratio estimate of  regional mean AGB and its standard error. Total plant cover allowed us to obtain a 
reliable estimation of  local AGB, and no better fit was attained by the inclusion of  other structure 
variables. The stand-level plant cover ranged between 18.7% and 95.2% and AGB between about 2.0 and 
70.8 Mg/hm2. AGB based on total plant cover was well estimated from LANDSAT TM bands 2 and 3, 
which facilitated a model-based ratio estimate of  the regional mean AGB (approximately 12.0 Mg/hm2) 
and its sampling error (about 30.0%). The mean AGB of  woody vegetation can greatly contribute to 
carbon storage in semi-arid lands. Thus, plant cover estimation by remote sensing images could be used to 
obtain regional estimates and map biomass, as well as to assess and monitor the impact of  land-use change 
on the carbon balance, for arid and semi-arid regions. 
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1  Introduction 

The loss of biomass is an important cause of increased greenhouse emissions mainly promoted by 
land-use change (Foley et al., 2005; Houghton, 2005). Thus, a decrease in deforestation rates is 
considered an important strategy to reduce CO2 emissions (Kindermann et al., 2008). In this 
context, carbon storage in vegetation biomass represents a valuable environmental service, and its 
quantification is, therefore, an important measurement to estimate and mitigate CO2 emissions 
from deforestation (Houghton, 2007; GTOS, 2010). Carbon storage has been widely studied, 
especially in tropical and subtropical forests, over the last decades (Baccini et al., 2008; Saatchi et 
al., 2011; Gasparri et al., 2013; Hansen et al., 2013; Cartus et al., 2014; Hengeveld et al., 2015). 
However, the carbon storage of woody communities in arid and semi-arid regions has received 
much less attention (Grainger, 1999; Malagnoux et al., 2007; Le Polain de Waroux and Lambin, 
2012). Globally, arid and semi-arid regions are considered an important carbon sink since they 
cover approximately 45.0% of the land area of the world (Grünzweig et al., 2003; Nosetto et al., 
2006).  

In dry ecosystems, tree cover and shrub cover are closely related to carbon storage, and their 
spatio-temporal features are strongly dependent on climate, soil, herbivory, wildfire frequency, 
and land-use change (Sankarán et al., 2005; Torres Robles et al., 2015; Zeberio and Pérez, 2020). 
Field estimation of biomass vegetation in arid and semi-arid regions is usually more difficult than 
it is in temperate forest regions due to the lack of classical tools such as national forest inventories 
and the standardized biomass equations available for trees (Le Polain de Waroux and Lambin, 
2012). Therefore, it is a priority to develop tools to quantify biomass at the local and regional 
scales, to correctly estimate the impact of land-use change on the carbon balance of these arid and 
semi-arid ecosystems. 

At the local scale, above-ground biomass (AGB) is frequently estimated through dimensional 
analysis, based on the allometric relationship between the plant dimension and the dry mass for 
individual species or species groups (Jenkins et al., 2004). Stem base diameter and diameter at 
breast height (DBH) are the most common and useful variables to estimate biomass at the 
individual tree level (Chave et al., 2005; Fonseca et al., 2009). In multi-stemmed woody species, 
the most useful variables are those related to the crown size because this is the best way to 
represent the plant volume (Hierro et al., 2000; Hofstad, 2005; Oñatibia et al., 2010; Conti et al., 
2019). However, allometric formulas for the estimation of tree and shrub biomass are not always 
available, especially for semi-arid vegetation, which is usually dominated by small trees and 
multi-stemmed shrubs (Hierro et al., 2000; Conti et al., 2013). In addition, serious difficulties arise 
when allometric models are used in the field because time-demanding variables must be 
measured. Furthermore, individuals are not isolated; instead, overlapping crowns are frequently 
found among individuals of the same or different species (Torres Robles et al., 2015; Zeberio et 
al., 2018). Alternatively, stand-level vegetation variables, such as plant cover and mean height, 
were shown to be easy-to-measure independent variables to estimate AGB in dry regions 
(Flombaum and Sala, 2007; Chojnacky and Milton, 2008; Pearce et al., 2010). Moreover, plant 
cover has been highlighted as a good single variable estimator of vegetation biomass in arid or 
semi-arid shrublands (Flombaum and Sala, 2007; Zhang et al., 2019), which can be appropriately 
estimated from remote sensing images.  

At the regional scale, remote sensing techniques have been considered valid tools for mapping 
and monitoring forest biomass (Dong et al., 2003; Houghton, 2005; Dengsheng, 2006). Statistical 
approaches are commonly used to link field data with remote sensing information in arid and 
semi-arid regions (Dengsheng, 2006; Chen et al., 2010). These approaches seek relationships 
between the vegetation biomass measured in the field and spectral variables (Galidaki et al., 2017; 
Chen et al., 2018). However, models to estimate AGB derived from remote sensing images are 
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specific for a given region at a given moment and have low transferability in space and time 
(Eisfelder et al., 2012). Thus, local and regional estimates of AGB are needed to understand the 
dynamics of carbon storage in arid and semi-arid regions of the world. 

A significant proportion of arid and semi-arid areas of South America are located in Argentina 
(Fensholt et al., 2012). AGB and plant cover have been estimated at a regional scale based on 
remote sensing technologies in Argentinian dry forestlands (Gasparri et al., 2010; Gasparri and 
Baldi, 2013; González-Roglich and Swenson, 2016) and shrublands. However, the wide range of 
variations in climate, physiognomy, and floristic composition throughout the arid and semi-arid 
areas in Argentina makes it clear that many local and regional estimations are still necessary.  

In this study, we estimated AGB in semi-arid woody vegetation in Northeast Patagonia, 
Argentina. We evaluated whether AGB at the stand level can be estimated from plant cover and to 
what extent the estimation accuracy is improved by the inclusion of other field-measured structure 
variables. We also evaluated whether the relationship between field-measured plant cover and 
remote sensing estimates can be used to reliably estimate and map the regional biomass. 

2  Methods and materials 

2.1  Study area 

The study area is located in Northwest Patagonia, Argentina, which is in the transition between the 
Espinal and Monte Ecoregions, within the geographical coordinates of 38°00′–41°00′S and 
64°28′–62°15′W (Morello et al., 2012; Oyarzabal et al., 2018) (Fig. 1). The zonal vegetation is the 
shrub-steppe with the height of 1.5‒3.0 m and vegetation cover of 50.0%‒80.0%. The most 
common shrub species are Larrea divaricata Cav., Chuquiraga erinacea D. Don subsp. erinacea, 
Condalia microphylla Cav., Monttea aphylla (Miers) Benth. & Hook, Prosopis flexuosa DC. var. 
depressa F. A. Roig., and Schinus johnstonii F. A. Barkley (Roig et al., 2009; Torres Robles et al., 
2015). Tree species are Greoffroea decorticans (Gillies ex Hook. & Arn.) Burkart (3.0‒6.0 m in 
height), Prosopis caldenia Burkart (>6.0 m in height), and Prosopis flexuosa DC. var. flexuosa 
Phil. (>6.0 m in height). These tree species are found as sparse trees or in small groups (<1 hm2) 
(León et al., 1998; Morello et al., 2012; Torres Robles et al., 2015). 

The climate is sub-temperate transitional dry, with warm summers and moderately cold winters, 
and windy, especially in spring and summer. Precipitation varies in a Southwest‒northeast 
gradient, approximately from 300 to 590 mm/a, with maximums in autumn and spring and high 
variability between years (Godagnone and Bran, 2009). Winters usually alternate between water 
surplus and water deficit (Gabella and Campo, 2016). Besides, soil water deficit exhibits in every 
spring, summer, and the beginning of autumn (October to April or May), with the maximum soil 
water stress occurring in the middle of summer (January) (Gabella and Campo, 2016). 

2.2  Experimental design 

Mean AGB of woody vegetation was estimated using a model-based ratio estimator (Kangas and 
Maltamo, 2006). First, we sampled the woody vegetation structure in 42 sampling sites (see Fig. 
1) between 2010 and 2012. Second, we estimated the biomass by direct harvest in 21 out of the 42 
sites between 2014 and 2016. Third, we fitted a model to estimate the AGB of the 42 sampling 
sites using stand-level plant cover as the independent variable. We fitted a second model using the 
AGB of the 42 sampling sites as the dependent variable and LANDSAT TM bands as independent 
variables. Finally, we estimated AGB at the regional scale and calculated the ratio between stand 
structure-based and satellite-based biomass estimates. From this ratio, we estimated the mean 
biomass for the whole study area and calculated its sampling error. 

2.3  Stand structure field sampling 

Stand structure was assessed in 42 sampling sites selected from the visual analysis of very high-
resolution images on the Google Earth platform. Based on such analysis, we selected the sampling 
sites that represent a gradient of vegetation cover between low and high, according to Di Gregorio 
and Jansen (2000) to achieve appropriate spatial distribution. Due to this non-random  
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Fig. 1  Geographical location of the study area and distribution of sampling sites. Structural survey sites: 1‒42; 
harvest sites for biomass estimation: 1‒21. The solid line indicates the limit between ''Monte'' (southwest) and 
''Espinal'' (northeast) ecoregions according to Morello et al. (2012), and the dotted line indicates the boundary of 
the transitional vegetation unit ''Transition Monte'', according to Oyarzabal et al. (2018).  

sampling procedure, we used model-based estimation (Kangas and Maltamo, 2006). In each site, 
the sample unit consisted of three 10 m×10 m plots which were established along a transect line 
with a distance of 70 m between plots. We located the starting point of the transect and selected its 
direction, so that the sample unit matched the selected plant cover category that were detected in 
the Google Earth images. We considered three woody plant categories: (1) large individuals, 
referring to single-stemmed plants separated from other plants(at least 5 cm in diameter at the 
stem base); (2) small individuals, referring to multi-stemmed plants separated from other plants or 
single-stemmed plants with DBH<5cm (stem diameter at 1.3 m in height); and (3) plant groups, 
including two or more small individuals, with the same or different species, and crowns in contact. 
We recorded the following measurements: (1) total height, as the distance between the highest 
point of the plant crown and the soil; (2) DBH, as the diameter of the stem at 1.3 m in height, only 
for large individuals; and (3) crown diameters, as the maximum diameter of the crown of 
individuals or groups, and a second measurement of a perpendicular diameter. Plant height was 
measured with an optical clinometer or a metric stick for plants less than 2.0 m in height. DBH 
was measured with a diametric tape and crown diameters with a metric tape. Based on these 
measurements, we calculated total plant cover (coverT) at the plot level as the sum of the crown 
cover of individuals and groups of plants divided by the plot area. The crown cover for each plant 
was approximated to the area of a circle of diameter equal to the average of maximum and 
perpendicular diameters. We calculated the maximum and average heights of the plot based on the 
height of individuals and plant groups. Basal area was calculated for every individual with DBH 
greater than 5 cm. 

2.4  Local-scale AGB estimation 

Based on the structure sampling, we selected 21 sites for biomass estimation. The selected sites 
approximately represented the observed range of woody vegetation cover, as well as even spatial 
distribution. In each of the 21 sites, a 5 m×5 m plot was centered in the third plot where stand 
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structure was previously sampled. In this plot, plant cover, height, and DBH were measured as 
described previously and all the above-ground parts of the woody plants were harvested. Plant 
parts were weighted in the field in separate categories: (1) leaves and branches with diameter less 
than 1 cm; (2) stems or branches with diameter of 1‒5 cm; (3) stems or branches with diameter of 
5–10 cm; and (4) stems with diameter greater than 10 cm. Aliquots of different categories were 
collected and oven-dried to constant weight to determine the humidity factors. We then estimated 
the dry biomass for each harvested plot, based on the field weights and the humidity factors.  

We fitted a linear model to estimate AGB from plant cover in the plot and evaluated whether the 
model fit improved with the inclusion of basal area, maximum height, average height, or the cover 
of different plant categories (plants with DBH of less than 5 cm, in the range of 5‒10 cm, and 
greater than 10 cm). We selected the final model was selected based on the Akaike Information 
Criterion (AIC), which is an appropriate measure to compare models with a different number of 
independent variables (Burnham and Anderson, 2002). The P values of the slope of independent 
variables and coefficient of determination (R2) were also indicated. Plots of fitted vs. observed 
values, as well as the histograms of the residuals, were used to visually evaluate the adequacy of 
the selected model and variables transformation (natural logarithm). The fitted linear model was 
applied to estimate AGB in all 42 sites where the woody vegetation structure was measured. Data 
were analyzed by Infostat software (di Rienzo et al., 2016). 

2.5  Regional-scale AGB estimation and mapping 

The biomass estimated for the 42 sites based on the stand structure was used to fit a linear model 
at a regional scale, using the LANDSAT 5 TM bands as independent variables (path 227–228 and 
row 088–087–086). The images were obtained from United States Geological Survey 
(www.usgs.gov). The fit of models to estimate plant biomass based on LANDSAT bands and 
vegetation indices can strongly vary among dates due to variations in plant and soil absorption and 
reflection responses (Gasparri et al., 2010). Thus, we analyzed images free of clouds between 
2007 and 2011 to cover different phenological phases and seasons, with are close to the dates of 
vegetation sampling. By visual interpretation, we ensured that no sample site was affected by 
land-use change within the time range of the LANDSAT image dates. A geometric and radiometric 
correction was applied to all images to remove data acquisition errors (González-Iturbe Ahumada, 
2004). The Rayleigh correction was applied to all images to calculate the reflectance at the surface 
level (Kaufman, 1989). The following vegetation indices were also calculated: Normalized 
Difference Vegetation Index (NDVI) (Rouse et al., 1974), Enhanced Vegetation Index (EVI) 
(Huete et al., 2002), and Soil-Adjusted Vegetation Index (SAVI) (Huete, 1988). The mean of three 
pixels, corresponding to the location of each structure plot per site, was calculated for bands 1 to 7 
(except the thermal infrared band 6), as well as for each vegetation index.  

We fitted linear regression models for each image date. Since similar models used for estimating 
biomass only include one or two independent variables (Gasparri et al., 2010), we first explored the 
simple linear correlations between structure-based estimations of biomass and the following 
predictors: satellite bands and vegetation indices. The best-correlated variable was then included in 
the model, and the remaining variables were added one at a time. We used AIC to compare the fit of 
different models. Student t values were used to evaluate the significance of each variable in the 
model and the predicted vs. observed plots to visually explore the linearity and homoscedasticity of 
the residuals. Based on such plots, we determined whether log-linear transformations (natural 
logarithm) should be applied or not. R2 was also indicated for each model. The selected model was 
applied to each pixel of the image with woody vegetation, for the corresponding date. We applied a 
map mask to exclude the AGB mapping for urban and agricultural areas as well as dunes, water 
bodies, and rocky areas. The mask was defined by using local maps. 

2.6  Mean biomass estimation and sampling error 

The mean biomass of the study area was calculated from the ratio between the mean structure-
based biomass estimate (variable y) and the mean satellite-based biomass estimate (variable x) for 
42 sampling sites. This ratio was multiplied by the mean satellite-based biomass estimation for the 
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entire images. Since the 42 sampling sites were selected to represent the observed range of woody 
plant cover, rather than following a sampling design, we estimated the sampling error for the 
model-based ratio estimation (Kangas and Maltamo, 2006). A bootstrap procedure was applied to 
estimate the sampling error (Gregoire and Salas, 2009; Mageto and Motubwa, 2018). This 
procedure consisted of four steps, as follows: (1) 21 pairs of values x (plant cover) and y (field-
measured biomass) were randomly taken from 21 observed data with reposition; (2) the linear 
model was fitted to estimate biomass based on plant cover; (3) the biomass was estimated for 42 
pairs of values randomly taken from the 42 sampling sites with repetition; and (4) the linear model 
was fitted to estimate biomass based on satellite variables (those selected in previous procedures), 
and the mean biomass was calculated by ratio estimation. This procedure was repeated 1000 times 
and the percentiles 5 and 95 were taken as 95% confidence limits. Additionally, we plotted the 
observed values (structure-based estimation of biomass) vs. predicted values (satellite-based 
estimations of biomass) obtained from all 1000 simulations. Percentile lines 5% and 95% were 
drawn using quantile regression for descriptive purposes. 

3  Results 

3.1  Vegetation structure data and local-scale AGB estimation 

Total plant cover ranged between 18.7% and 95.2% in the 42 sites sampled for the estimation of 
vegetation structure (Table S1). The cover of plants with DBH less than 5 cm accounted for more 
than 80.0% of the total cover in 32 out of 42 sites, while the cover of plants with DBH greater 
than 5 cm accounted for a maximum of 40.0%‒60.0% in only 5 of these 42 sites (Table S1; Fig. 
2). Among the sampling sites where direct harvest was carried out, the cover of plants with DBH 
greater than 5 cm accounted for more than 50.0% of the total cover in 7 out of 21 sites (Table S2). 
Plant biomass mostly ranged between 2.0 and 70.8 Mg/hm2 and reached a maximum of 161.1 
Mg/hm2 (Table S2). 

 
Fig. 2  Woody vegetation with different total coverages in the study region. (a), site 19 (cover of 95.2%); (b), site 
12 (cover of 68.6%); (c), site 17 (cover of 71.4%); (d), site 2 (cover of 26.0%). 

All the models used for estimating AGB based on structure variables fitted well (R2>0.70 in all 
cases). The best linear trends in the observed-predicted plots were obtained from models fitted 
with log-transformed dependent and independent variables. The model fitted using only total 
cover as predictor exhibited a lower AIC than those including more detailed structure variables 
(Table 1). This model exhibited clear linear trends and homogeneous dispersion in the observed-
predicted plot (Fig. 3). The maximum observed biomass followed the linear trend of all data. 



924  JOURNAL OF ARID LAND 2021 Vol. 13 No. 9  

 

Table 1  Models used to estimate above-ground biomass (AGB) based on structure variables 
Model n b0 b1 b2 b3 AIC R2 

logAGB=b0+b1logCoverT# 21 ‒4.62*** 1.92***  - 31.9 0.80*** 
logAGB=b0+b1logCoverT+b2BA 21 ‒4.03** 1.75*** 0.16NS - 32.6 0.80*** 

logAGB=b0+b1logCoverT+b2Mean height 21 ‒4.26** 1.75*** 0.33NS - 32.1 0.81*** 
logAGB=b0+b1logCoverT+b2Max height 21 ‒4.18** 1.75*** 0.11NS - 33.1 0.80*** 

logAGB=b0+b1Cover>10+b2Cover5‒10+b3Cover<5 21       1.26** 0.03*** 0.04** 0.02NS 38.4 0.75** 
Note: AGB, above-ground biomass; CoverT, total plant cover; BA, basal area; Max height, maximum height in the plot; Mean height, 
mean height in the plot; Cover>10, vegetation cover of individuals with a diameter at breast height (DBH) greater than 10 cm; Cover5‒10, 
vegetation cover of individuals with DBH between 5 and 10 cm; Cover<5, vegetation cover of individuals or groups with DBH less than 5 
cm; n, number of sites; b0, b1, b2, and b3, coefficients; AIC, Akaike Information Criterion; R2, coefficient of determination; *** and **, 
significance levels of 0.0001 and 0.01, respectively; NS, non-significant; -, no data. # means the selected model in this study. 

 

Fig. 3  Relationship between log-transformed total plant cover and log-transformed above-ground biomass. The 
selected model is plotted as a solid line. 

3.2  Regional-scale AGB estimation from satellite data and mapping 

High absolute correlations were found between AGB and individual bands as well as between 
AGB and vegetation indices. The greatest absolute correlations were observed in late spring and 
no significant correlations were observed in middle or late summer, as shown in Table 2. The best 
model to estimate log-transformed AGB was fitted with data from late spring, including the log-
transformed band 3 as the first variable in the model. The log-transformed band 2 was retained as 
the second variable in the model, which exhibited an approximately linear trend between the 
observed and predicted values (Table 3; Fig. 4). No further variables were retained based on AIC 
values. The fitted AGB values ranged approximately between 2.5 and 70.3 Mg/hm2. 

Table 2  Pearson's correlation coefficient for the bands (LANDSAT TM) and green indices (NDVI, SAVI, and 
EVI) in relation to the biomass on different dates 

Date 
(dd/mm/yy) B1 B2 B3 B4 B5 B7 NDVI SAVI EVI 

19/09/10 ‒0.41** ‒0.68*** ‒0.61***  ‒0.62*** ‒0.66*** ‒0.59*** ‒0.06 NS ‒0.29* ‒0.23NS 
10/10/10 ‒0.64*** ‒0.68*** ‒0.68***  ‒0.75*** ‒0.66*** ‒0.58** 0.05NS ‒0.33** ‒0.27* 
21/12/10 ‒0.63*** ‒0.69*** ‒0.76*** ‒0.54** ‒0.69*** ‒0.67*** 0.77*** 0.68*** 0.73*** 
23/01/11 ‒0.32** ‒0.37** ‒0.39** ‒0.16NS ‒0.43** ‒0.39** 0.41** 0.28* 0.31** 
17/03/07 ‒0.64*** ‒0.68*** ‒0.67*** ‒0.17NS ‒0.62*** ‒0.63*** 0.51** 0.39** 0.41** 

Note: B1, band 1; B2, band 2; B3, band 3; B4, band 4; B5, band 5; B7, band 7; NDVI, Normalized Difference Vegetation Index; SAVI, 
Soil-Adjusted Vegetation Index; EVI, Enhanced Vegetation Index; ***, **, and *, significance levels of 0.0001, 0.01, and 0.05, 
respectively; NS, non-significant. 
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Table 3  Regression models of AGB based on spectral data 

Model n b0 b1 b2 AIC R2 
logAGB=b0+b1logB2+b2logB3# 42  3.64NS  11.77** ‒11.30*** 62.3 0.62*** 

AGB=b0+b1NDVI 42 ‒31.23*** 226.48*** - 75.1 0.58*** 
logAGB=b0+b1logB4 42  ‒5.70*** ‒4.34*** - 93.1 0.56*** 

AGB=b0+b1EVI 42  ‒34.12** 304.37*** - 76.7 0.52*** 
Note: The B2, B3, NDVI, and EVI were dated on 21 December 2010. The B4 was dated on 10 October 2010. *** and **, significance 
levels of 0.0001 and 0.01, respectively; NS, non-significant; -, no data. # means the selected model in this study. 

 
Fig. 4  Predicted vs. observed values of the regression of log-transformed AGB based on bands 2 and 3. The solid 
line indicates a linear model with intercept=0 and slope=1. 

The application of the model to the entire study area yielded a predicted biomass ranging 
between 4.9 and 96.7 Mg/hm2. A clear spatial trend was apparent on the map (Fig. 5). The highest 
AGB values of woody vegetation were found in the study area where rainfall is higher, while the 
lowest values were observed towards the southwestern part, where rainfall is lower. In this sense, 
at the regional level, AGB of woody vegetation decreased from northeast to southwest (Fig. 5a). 
However, high biomass values were observed along the entire gradient (Fig. 5b). Regarding the 
biomass categories, 58.0% of the surface land had values between 5.0 and 10.0 Mg/hm2, and 
32.0% showed values between 10.0 and 20.0 Mg/hm2, that is, 90.0% of the region yielded AGB 
values between 5.0 and 20.0 Mg/hm2 (Fig. 5a). In contrast, 10.0% of the region exhibited AGB 
ranging from 20.0 Mg/hm2 to more than 60.0 Mg/hm2.  

The mean AGB in study area was 11.9 Mg/hm2 by ratio estimation (8.0‒16.0 Mg/hm2) (Fig. 6). 
The total AGB of the study area (0.60×106 km2) was 72.4 Tg, equivalent to a carbon stock of 36.2 
Tg C. The bootstrap-based confidence interval yielded a sampling error of about 33.0%. The 
bootstrapped predicted-observed plot showed an approximately linear trend while the effect of 
influencing local data was observed for predicted biomass of about 25.0 Mg/hm2. The lines of 
5.0% and 95.0% quantile regression showed symmetric departures from the expected predicted-
observed relationship (intercept=0, slope=1). 

4  Discussion 

4.1  Local-scale AGB estimation 

Total plant cover allowed us to obtain accurate estimates of AGB. There were wide differences 
between sites in the cover of different plant size categories as well as in the mean height and 
maximum height. Despite the structure variation, the estimate of AGB based on the total cover 
was not improved by including more structure variables in the model. The cover of the smaller 
plants (plants with DBH less than 5 cm or stem height below 1.3 m) was clearly the most 
important component of woody vegetation. 
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Fig. 5  AGB mapped for the entire study area based on LANDSAT TM bands 2 and 3 (a), and cut-offs of AGB 
along the geographic gradient (b‒e). Isohyets reflects the mean annual precipitation. 

 

Fig. 6  Predicted vs. observed plots of the model of AGB based on bands 2 and 3 in 1000 permutations of the 
bootstrap procedure. Solid and discontinuous lines exhibit 95% upper and lower confidence limits (5 and 95 
quantiles, respectively). 

Stem diameter and plant height may be needed for the accurate estimation of biomass of woody 
vegetation (Chojnacky and Milton, 2008; Pearce et al., 2010); however, plant cover demonstrated 
to be a suitable predictor of biomass measured at the field scale or using remote sensing 
technologies (González‒Roglich and Swenson, 2016; Pordel et al., 2018; Fusco et al., 2019). In 
Argentina, different studies have found that models to estimate the individual shrub weight based 
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only on crown cover or diameter and those including plant height had a similar fit. Oñatibia et al. 
(2010) found that in semi-arid, cold-temperate shrublands of central Patagonia, Argentina, the 
individual weight of three dominant shrub species was similarly estimated by models based on the 
average crown diameter and those models including total plant height. Similarly, in semi-arid, 
warm-temperate shrublands, the crown diameter was the best estimator of individual plant weight 
in shrub species while stem diameter was the best estimator of tree species (Hierro et al., 2000). 
All the species in that study are found in our study area. Finally, in semi-arid woody vegetation of 
northern Argentina (Chaco region), crown area was the best estimator of individual plant weight in 
single-variable models for eight shrub species with the height ranging between 1.0 and 4.0 m 
(Conti et al., 2013). Moreover, crown area was the best estimator of individual plant weight for all 
species-pooled data. These studies explain at the individual plant level what we found at the stand 
level. 

Stand-level AGB estimates of semi-arid woody vegetation in Argentina are scarce given the 
wide distribution area and variable climate. The stand-level plant cover we estimated ranged 
between 18.7% and 95.2% and AGB between about 2.0 and 70.8 Mg/hm2. These estimates are 
lower than those found for the stand-level subtropical Chaco forests in semi-arid regions 
(45.0‒135.0 Mg/hm2; Gasparri et al., 2010) and those found for the semi-arid warm-temperate 
Espinal savanna (about 5.0‒100.0 Mg/hm2; González‒Roglich and Swenson, 2016). On the other 
hand, the stand-level AGB we estimated was higher than the AGB of warm-temperate Monte 
shrublands (7.0‒8.0 Mg/hm2; Zivkovic et al., 2013), above the semi-arid cool temperate Monte 
shrublands in east of Patagonia (about 10.0‒30.0 Mg/ hm2, Bertiller et al., 2004), and the cool 
temperate shrublands in northwest (10.0‒14.0 Mg/hm2, Nosetto et al., 2006) and south (5.0‒20.0 
Mg/hm2; Peri, 2011) of Patagonia. Thus, the AGB we estimated follows a decreasing north‒south 
gradient of semi-arid ecosystem, and large geographical gaps need to be filled.  

4.2  Regional estimate of AGB and mapping 
Total plant cover was well estimated from LANDSAT TM. Different results were reported 
regarding the estimation of plant cover or biomass based on satellite bands or indices. Many 
studies found that vegetation indices are good predictors of plant cover or biomass (Gasparri et al., 
2010; Yan et al., 2013; Pordel et al., 2018; Fusco et al., 2019), while individual LANDSAT TM 
bands or linear combinations were also reported to be good predictors (Chen and Gillieson, 2009; 
Chen et al., 2018; Lopez Serrano et al., 2020). The estimation of vegetation variables based on 
remote sensing products is also dependent on seasonal vegetation changes (Chen and Gillieson, 
2009; Gasparri et al., 2010; Issa et al., 2020). Here, we found the linear combination of 
LANDSAT TM bands 2 and 3 at the end of spring, to be the best predictor of field-measured plant 
cover. Typically, vigorous vegetation shows a reduced reflectance in blue and red wavelengths 
(visible bands 1 and 3, respectively) and a relative maximum reflectance in the green portion of 
the spectrum (band 2) (Navone, 2003). In this sense, the coefficients of bands 2 and 3 in the model 
were positive and negative, respectively, and the model fitted well right before the dry season 
begins.  

The good fit of the model for estimating AGB based on LANDSAT bands allowed us to 
estimate a reliable ratio of regional biomass to woody vegetation. The use of ratio estimation is 
recommended if the Pearson linear correlation is above 0.60 between the target variable (the 
estimation of AGB based on total plant cover measured in the field) and the auxiliary variable 
(fitted values of the model based on LANDSAT bands 2 and 3) (Kangas and Maltamo, 2006). This 
condition is largely satisfied since the model fit is greater than 60.0% (R2=0.63). The ''model-
based'' condition of our ratio estimator of mean AGB is attributed to the fact that we did not 
follow a sampling design to select the sites in which target and auxiliary variables were 
simultaneously observed. Instead, these sites were selected to represent a gradient in plant cover in 
an approximately even spatial distribution throughout the study area. Due to this non-probabilistic 
selection of the sampling sites, the reliability of the estimation relies on the adequacy of the model 
and constitutes a recommended procedure for the estimation of mean AGB from remote sensing 
and its sampling error (Ståhl et al., 2016). Since the AGB was estimated based on field-measured 
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total plant cover, we used a bootstrap procedure, rather than the standard formulas given, for 
example, by Kangas and Maltamo (2006), to calculate the sampling error. The bootstrap was 
carried out by resampling the database that we used to fit the regression of AGB on plant cover, 
both measured in the field, as well as the regression of AGB estimated from plant cover on 
LANDSAT bands. Thus, the entire estimation procedure was taken into account in the estimation 
of the sampling error. 

The mean model-based ratio estimate of AGB was clearly under the middle point of the field 
observed and of the estimated AGB because the pixels with low estimated AGB were far more 
frequent than the pixels with high estimated AGB. Mean and sampling error estimates over large 
areas are needed to quantify the contribution of woody vegetation to the ecosystem carbon stock. 
The mean AGB found (approximately 12.0 Mg/hm2) represented a mean carbon stock of 
approximately 6.0 Mg/hm2, which was slightly lower than the carbon stock reported for the 
Espinal savannas (8.0 Mg/hm2), located about 250 km to the northwest of the study area in more 
humid and warmer climate conditions. Sampling error (about 30.0%) and the estimation area size 
were also similar between both studies: 0.50×106 km2 in González‒Roglich and Swenson (2016) 
and 0.61×106 km2 of woody vegetation in this study.  

The geographical gradient of local AGB shown by satellite-based estimates clearly agrees with 
a climate gradient and the structural geographical variations described by Torres Robles et al. 
(2015). The mean annual precipitation ranges from 500‒600 mm/a in north‒northeast of the study 
area to 300‒400 mm/a in south‒southwest of the study area. The maximum local AGB in the map 
ranges from >60.0 Mg/hm2 to about 5.0‒10.0 Mg/hm2 in the same geographical gradient. The 
maximum satellite-based estimates of AGB are similar to the satellite-based estimates of AGB in 
subtropical semi-arid Chaco forests (about 54.0 Mg/hm2) reported by Gasparri and Baldi (2013) at 
the driest end of a precipitation gradient in northern Argentina (about 400 mm/a). This highlights 
the important role that the extensive semi-arid shrublands play in carbon storage.  

Shoshany and Karnibad (2015) proposed a model to estimate the AGB in semi-arid shrublands 
in Israel. Based on this model, they estimated a maximum AGB of about 40.0 and 15.0 Mg/hm2 
for mean annual precipitation of 550 and 350 mm/a, respectively. These values are similar to those 
estimated in the present study if the uncertainty of such estimates is taken into account. Local 
AGB is greatly affected by land use (Shoshany and Karnibad, 2015), and Torres Robles et al. 
(2015) reached the same conclusion in relation to woody vegetation structure in the study area. A 
high small-scale spatial variation in AGB is observed in east-southeast of the study area, where 
intensive land-use change affects the woody vegetation structure (Torres Robles et al., 2015).  

5  Conclusions 

Total plant cover allowed us to obtain a reliable estimation of local AGB, and no better fit was 
attained by the inclusion of other structure variables. In turn, AGB calculated from total plant 
cover was well estimated from LANDSAT TM bands 2 and 3, which allowed us to obtain a 
model-based ratio estimate of the regional mean AGB and its sampling error. The biomass in the 
region ranged from 96.7 Mg/hm2 in northeast to 4.9 Mg/hm2 in southwest, with an average value 
for the region of 11.9 Mg/hm2 (an error of 33.0%). The mean AGB of woody vegetation can 
greatly contribute to carbon storage in arid and semi-arid lands.  

Knowing the mean AGB in the region provides us with a useful tool to estimate the impact of 
land-use change on the carbon balance of these ecosystems. In this context, our results show the 
importance of estimating AGB from woody cover and remote sensors, which should be used 
formally in woody vegetation biomass monitoring systems in arid and semi-arid ecosystems. 
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Appendix  

Table S1  Estimates of the structural variables for the analyzed sites 

n Mean height 
(m) 

Maximum 
height (m) 

Cover>5 
(%) 

Cover<5 
(%) 

CoverT 
(%) 

BA 
(m2) 

 3 0.78 1.50 0.0 18.7 (100.0) 18.7  

 5 1.64 2.50 4.0 (18.0) 18.2 (82.0) 22.3 4.6 

42 2.38 4.00 10.9 (46.0) 13.0 (54.0) 23.9 4.3 

 2 0.57 1.50 0.0 26.0 (100.0) 26.0  

 9 1.28 2.00 0.0 26.7 (100.0) 26.7  

29 1.09 1.80 0.0 27.8 (100.0) 27.8  

41 1.56 2.00 0.0 28.5 (100.0) 28.6  

 4 0.88 2.50 0.9 (3.0) 27.8 (97.0) 28.6 0.4 

35 0.78 1.50 0.0 32.9 (100.0) 32.9  

 8 0.77 1.50 0.0 36.0 (100.0) 36.0  

10 0.73 1.50 0.0 36.3 (100.0) 36.3  

22 1.11 1.70 0.0 36.6 (100.0) 36.6  

36 0.85 2.00 0.0 37.3 (100.0) 37.3  

34 0.91 2.00 0.0 41.8 (100.0) 41.8  

26 0.84 1.50 0.0 44.3 (100.0) 44.3  

 6 1.03 2.00 0.0 44.3 (100.0) 44.3  

 1 1.01 2.00 0.0 45.3 (100.0) 45.3  

31 1.03 4.00 19.8 (43.0) 26.0 (57.0) 45.8 2.2 

11 1.07 1.50 0.0 48.3 (100.0) 48.3  

13 1.04 2.00 0.4 (1.0) 48.1 (99.0) 48.4 0.2 

27 0.68 1.50 0.7 (1.0) 50.2 (99.0) 50.9 0.4 

24 0.75 1.50 0.0 52.5 (100.0) 52.5  

32 1.01 2.00 0.0 54.1 (100.0) 54.1  

30 1.21 3.00 3.1 (6.0) 51.8 (94.0) 54.9 1.7 

40 1.53 2.00 0.0 56.1 (100.0) 56.1  

23 1.13 2.10 0.0 57.1 (100.0) 57.1  

 7 1.69 3.50 19.1 (33.0) 38.6 (67.0) 57.8 9.6 

16 1.71 5.00 16.3 (28.0) 41.7 (72.0) 57.8 18.0 

28 0.94 1.75 0.0 59.4 (100.0) 59.4  

15 1.25 2.00 0.0 60.4 (100.0) 60.4  

14 1.63 4.00 11.9 (19.0) 49.3 (81.0) 61.2 4.3 

33 1.56 3.50 9.5 (14.0) 57.9 (86.0) 67.4 8.6 

12 1.52 3.00 4.6 (7.0) 64.0 (93.0) 68.6 17.7 

25 1.43 3.00 11.1 (16.0) 58.0 (84.0) 69.1 5.2 

20 1.12 2.00 0.8 (1.0) 69.9 (99.0) 70.7 0.4 

17 1.71 4.00 26.2 (37.0) 45.2 (63.0) 71.4 11.2 

38 1.12 3.00 4.7 (6.0) 71.6 (94.0) 76.3 2.5 

39 1.94 4.00 37.1 (48.0) 40.4 (52.0) 77.5 20.5 

37 1.82 3.00 28.6 (36.0) 50.5 (64.0) 79.1 111.2 

18 1.49 2.50 17.4 (21.0) 64.9 (79.0) 82.3 1.0 

21 2.08 5.00 40.6 (44.0) 52.5 (56.0) 93.0 7.3 

19 1.91 4.50 50.6 (53.0) 44.6 (47.0) 95.2 24.6 

Note: n, number of sites; Mean height, mean height in the plot; Maximum height, maximum height in the plot; Cover>5, vegetation cover 
of individuals with a diameter at breast height (DBH) greater than 5 cm. The percentage with respect to the total coverage is indicated in 
parentheses. Cover<5, vegetation cover of individuals with a diameter at breast height (DBH) less than 5 cm. The percentage with respect 
to the total coverage is indicated in parentheses. CoverT, total plant cover; BA, basal area. 
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Table S2  Structural variables in the Monte-Espinal transition of NE Patagonia 
n CoverT 

(%) 
Mean height 

(m) 
Maximum height 

(m) 
BA 
(m2) 

Cover>10 
(%) 

Cover5‒10 
(%) 

Cover<5 
(%) 

AGB 
(Mg/hm2) 

 1 19.2 0.5 1.2 0.0    0.0   0.0 19.2    5.3 

 2 22.3 0.5 0.7 0.0    0.0   0.0 22.3    2.7 

 3 24.0 1.1 1.4 0.0    0.0   2.8 21.2    2.0 

 4 32.7 0.8 1.8 0.0    0.0   0.0 32.7    7.5 

 5 34.6 1.1 1.1 0.0    0.0 23.6 11.1  14.8 

 6 45.1 1.1 1.7 0.0    0.0 16.6 28.5  14.0 

 7 45.1 2.5 3.5 0.9   31.6 13.6   0.0  34.7 

 8 46.8 1.3 1.7 0.0    0.0 46.8   0.0  20.2 

 9 47.5 0.7 2.5 0.0    0.0   0.0 47.5  12.4 

10 48.3 1.2 2.5 0.0    0.0 12.0 36.3  15.4 

11 50.4 1.5 1.4 0.5   18.1 21.7 10.6  27.1 

12 51.2 1.2 1.7 0.0    0.0 12.2 39.0  14.7 

13 56.2 1.8 1.5 0.0    0.0 43.0 13.2  18.2 

14 57.9 1.0 1.1 0.0  46.4   0.0 11.5  10.9 

15 69.0 1.5 2.2 0.3  63.6   0.0   5.4  70.8 

16 70.7 1.8 4.0 1.1   50.0   0.0 20.7  20.3 

17 77.0 2.0 4.3 1.3   48.3 14.8 13.9  54.8 

18 78.5 1.4 2.5 0.0   78.5   0.0   0.0  29.3 

19 91.0 2.2 3.5 0.9   62.5   0.0 28.4  51.7 

20 92.7 1.2 1.7 0.0   44.2 47.8   0.8  58.9 

21 144.7 1.4 5.0 7.4 128.0   0.0 16.7 161.1 
Note: n, number of sites; Cover T, total plant cover; Mean height, mean height in the plot; Maximum height, maximum height in the plot; 
BA, basal area; Cover>10, vegetation cover of individuals with a diameter at breast height (DBH) greater than 10 cm; Cover5‒10, 
vegetation cover of individuals with DBH between 5 and 10 cm; Cover<5, vegetation cover of individuals or groups with DBH less than 5 
cm; AGB, above-ground biomass.  

 

 

 

 

 

 

 

 

 

 

 


