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Abstract. In this paper, we establish several characterizations of the
A-parallelism of bounded linear operators with respect to the semi-
norm induced by a positive operator A acting on a complex Hilbert
space. Among other things, we investigate the relationship between A-
seminorm-parallelism andA-Birkhoff-James orthogonality ofA-bounded
operators. In particular, we characterize A-bounded operators which
satisfy the A-Daugavet equation. In addition, we relate the A-Birkhoff-
James orthogonality of operators and distance formulas and we give an
explicit formula of the center mass for A-bounded operators. Some other
related results are also discussed.
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1. Introduction and Preliminaries

Let B(H) denote the C∗-algebra of all bounded linear operators acting on
a non trivial complex Hilbert space H with an inner product ⟨·, ·⟩ and the
corresponding norm ∥ · ∥. The symbol IH stands for the identity operator on
H (or I if no confusion arises). In all that follows, by an operator we mean
a bounded linear operator. The range of every operator is denoted by R(T ),
its null space by N (T ) and T ∗ is the adjoint of T . If T, S ∈ B(H), we write
T ≥ S whenever ⟨Tx, x⟩ ≥ ⟨Sx, x⟩ for all x ∈ H. An element A ∈ B(H)
such that A ≥ 0 is called positive. For every A ≥ 0, there exists a unique
positive A1/2 ∈ B(H) such that A = (A1/2)2. For the rest of this article, we
assume that A ∈ B(H) is a positive nonzero operator, which clearly induces
the following semi-inner product

⟨·, ·⟩A : H×H −→ C, (x, y) 7−→ ⟨x, y⟩A := ⟨Ax, y⟩.

Notice that the induced seminorm is given by ∥x∥A =
√

⟨x, x⟩A, for every
x ∈ H. This makes H into a semi-Hilbert space. One can check that ∥ · ∥A
is a norm on H if and only if A is injective, and that (H, ∥ · ∥A) is complete



2 T. Bottazzi, C. Conde and K. Feki

if and only if R(A) is closed. The semi-inner product ⟨·, ·⟩A induces an inner
product on the quotient space H/N (A) defined as

[x, y] = ⟨Ax, y⟩, ∀x, y ∈ H/N (A).

Notice that (H/N (A), [·, ·]) is not complete unless R(A) is a closed subset of
H. However, a canonical construction due to L. de Branges and J. Rovnyak
in [9] (see also [14]) shows that the completion of H/N (A) under the inner
product [·, ·] is isometrically isomorphic to the Hilbert space R(A1/2) with
the inner product

⟨A1/2x,A1/2y⟩R(A1/2) := ⟨PR(A)
x, PR(A)

y⟩, ∀x, y ∈ H, (1.1)

where PR(A)
denotes the orthogonal projection ontoR(A). For the sequel, the

Hilbert space
(
R(A1/2), ⟨·, ·⟩R(A1/2)

)
will be denoted by R(A1/2). By using

(1.1), one can check that

⟨Ax,Ay⟩R(A1/2) = ⟨x, y⟩A, ∀x, y ∈ H,
which, in turn, implies that

∥Ax∥R(A1/2) = ∥x∥A, ∀x ∈ H. (1.2)

We refer the reader to [4] and the references therein for more information
concerning the Hilbert space R(A1/2).

For T ∈ B(H), an operator S ∈ B(H) is said an A-adjoint operator of T
if the identity ⟨Tx, y⟩A = ⟨x, Sy⟩A holds for every x, y ∈ H, or equivalently,
S is solution of the operator equation AX = T ∗A. Notice that this kind of
equation can be investigated by using the following well-known theorem due
to Douglas (for its proof see [12]).

Theorem A. If T, S ∈ B(H), then the following statements are equivalent:

(i) R(S) ⊆ R(T ).
(ii) TD = S for some D ∈ B(H).
(iii) There exists λ > 0 such that ∥S∗x∥ ≤ λ∥T ∗x∥ for all x ∈ H.

If one of these conditions holds, then there exists a unique solution of the
operator equation TX = S, denoted by Q, such that R(Q) ⊆ R(T ∗). Such Q
is called the reduced solution of TX = S.

If we denote by BA(H) and BA1/2(H) the sets of all operators that admit
A-adjoints and A1/2-adjoints, respectively, then an application of Theorem
A gives

BA(H) =
{
T ∈ B(H) ; R(T ∗A) ⊆ R(A)

}
,

and

BA1/2(H) =
{
T ∈ B(H) ; ∃ c > 0 ; ∥Tx∥A ≤ c∥x∥A, ∀x ∈ H

}
.

Operators in BA1/2(H) are calledA-bounded. Notice that BA(H) and BA1/2(H)
are two subalgebras of B(H) which are, in general, neither closed nor dense in
B(H) (see [2]). Moreover, the following inclusions BA(H) ⊆ BA1/2(H) ⊆ B(H)
hold and are in general proper (see [15]).



On A-parallelism and A-Birkhoff-James orthogonality 3

Let T ∈ BA(H). The reduced solution of the equation AX = T ∗A
will be denoted by T ♯A . Note that, T ♯A = A†T ∗A. Here A† is the Moore-
Penrose inverse of A. We mention that if T ∈ BA(H), then T ♯A ∈ BA(H)
and (T ♯A)♯A = PR(A)

TPR(A)
. For more results concerning T ♯A see [2, 3]. It

is useful to recall that an operator T ∈ BA(H) is called A-normal if TT ♯A =

T ♯AT (see [4, 8]). Notice that T is A-normal if and only if R(TT ♯A) ⊆ R(A)
and ∥T ♯Ax∥A = ∥Tx∥A for all x ∈ H (see [23]). Now, it is well-known that
⟨·, ·⟩A induces on BA1/2(H) the following seminorm:

∥T∥A := sup
x∈R(A),

x ̸=0

∥Tx∥A
∥x∥A

= sup
{
∥Tx∥A ; x ∈ H, ∥x∥A = 1

}
<∞. (1.3)

It can be observed that for T ∈ BA1/2(H), ∥T∥A = 0 if and only if AT = 0.
Notice that it was proved in [13] that for T ∈ BA1/2(H) we have

∥T∥A = sup {|⟨Tx, y⟩A| ; x, y ∈ H, ∥x∥A = ∥y∥A = 1} . (1.4)

It can be verified that, for T ∈ BA1/2(H), we have ∥Tx∥A ≤ ∥T∥A∥x∥A for all
x ∈ H. This implies that, for T, S ∈ BA1/2(H), we have ∥TS∥A ≤ ∥T∥A∥S∥A.
In addition, we have ∥T ♯AT∥A = ∥TT ♯A∥A = ∥T∥2A = ∥T ♯A∥2A for all T ∈
BA(H) (see [3, Proposition 2.3.]). Notice that it may happen that ∥T∥A =
+∞ for some T ∈ B(H) (see [15]). For more details concerning A-bounded
operators, see [4] and the references therein. Recently, A. Saddi generalized
in [23] the concept of the numerical radius of Hilbert space operators and
defined the A-numerical radius of an operator T ∈ B(H) by

ωA(T ) = sup {|⟨Tx, x⟩A| ; x ∈ H, ∥x∥A = 1} = sup {|λ| ; λ ∈WA(T )} ,
where WA(T ) denotes the A-numerical range of T which was firstly defined
by Baklouti et al. in [7] as

WA(T ) = {⟨Tx, x⟩A ; x ∈ H, ∥x∥A = 1} .

If T ∈ BA1/2(H) then ωA(T ) < +∞ and

1

2
∥T∥A ≤ ωA(T ) ≤ ∥T∥A.

Very recently, the A-Davis-Wielandt radius of an operator T ∈ B(H) is de-
fined, as in [18], by

dωA(T ) = sup

{√
|⟨Tx, x⟩A|2 + ∥Tx∥4A ; x ∈ H, ∥x∥A = 1

}
.

Notice that it was shown in [18], that for T ∈ B(H), dωA(T ) can be equal to
+∞. However, if T ∈ BA1/2(H), then we have

max{ωA(T ), ∥T∥2A} ≤ dωA(T ) ≤
√
ωA(T )2 + ∥T∥4A <∞.

Recently, the concept of the A-spectral radius of A-bounded operators has
been introduced by the third author in [15] as follows:

rA(T ) := inf
n≥1

∥Tn∥
1
n

A = lim
n→+∞

∥Tn∥
1
n

A . (1.5)
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We note here that the second equality in (1.5) is also proved in [15, Theorem
1]. An operator T ∈ BA1/2(H) is said to be A-normaloid if rA(T ) = ∥T∥A.
Moreover, T is called A-spectraloid if rA(T ) = ωA(T ). It was shown in [15]
that for every A-normaloid operator T ∈ BA1/2(H) we have

rA(T ) = ωA(T ) = ∥T∥A. (1.6)

Obviously, (1.6) implies that every A-normaloid operator is A-spectraloid.

Throughout this paper, let T denote the unit cycle of the complex plane,
i.e. T = {λ ∈ C ; |λ| = 1}. Recall from [18] that an operator T ∈ BA1/2(H)
is said to be A-seminorm-parallel to an operator S ∈ BA1/2(H), in short
T ∥A S, if there exists some λ ∈ T such that ∥T + λS∥A = ∥T∥A + ∥S∥A.
If A = I, then ∥I will simply denoted by ∥. Recall also from [27] that an
element T ∈ BA1/2(H) is said to be A-Birkhoff-James orthogonal to another
element S ∈ BA1/2(H), denoted by T ⊥BJ

A S, if

∥T + γS∥A ≥ ∥T∥A, for all γ ∈ C.

Very recently, the A-Birkhoff-James orthogonality of A-bounded operators
has been investigated by Sen et al. in [24]. We mention also here that several
results covering some classes of Hilbert space operators were extended to A-
bounded operators (see, e.g., [10, 14, 15, 16, 18, 21, 27] and the references
therein).

The following lemma will be used in due course of time. Notice that the
proof of the assertion (i) can be found in [4]. Further, for the proof of the
assertions (ii) and (iii), we refer to [15]. In addition, the assertion (iv) has
been proved in [21]. Finally, the proof of last assertion can be found in [18].

Lemma B. Let T ∈ B(H). Then T ∈ BA1/2(H) if and only if there exists a

unique T̃ ∈ B(R(A1/2)) such that ZAT = T̃ZA. Here, ZA : H → R(A1/2) is
defined by ZAx = Ax. Moreover, the following properties hold

(i) ∥T∥A = ∥T̃∥B(R(A1/2)).

(ii) rA(T ) = r(T̃ ).

(iii) WA(T ) =W (T̃ ).

(iv) If T ∈ BA(H), then T̃ ♯A = (T̃ )∗.

(v) If T, S ∈ BA1/2(H), then T ∥A S if and only if T̃ ∥ S̃.

The remainder of the paper is organized as follows. In Section 2, we
present different characterizations of the notion of A-seminorm-parallelism.
Some of the obtained results cover and extend the work of Zamani et al. [26].
In particular, we investigate when theA-Davis-Wielandt radius of an operator
coincides with its upper bound. In section 3, we give another characteriza-
tions of A-seminorm-parallelism related to A-Birkhoff-James orthogonality.
Finally, section 4 is devoted to obtain some formulas for the A-center of mass
of A-bounded operators using well-known distance formulas.
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2. A-seminorm-parallelism

Our starting point in the present section is the following examples of seminorm-
parallelism in semi-Hilbert spaces.

Examples 2.1. (1) Let T, S ∈ BA1/2(H) be linearly dependent operators.
Then T ∥A S (see [18, Example 3]).

(2) Let A =

(
1 0
0 2

)
and T =

(
1 0
0 −1

)
be operators acting on C2. Then

for λ = 1, simple computations show that

∥T + λI∥A = ∥T∥A + ∥I∥A = 2.

Hence T ∥A I.
(3) Let λ > 0 and A, T, S : ℓ2(N) → ℓ2(N) be such that

S(x) = (λx1, λx2, x3, x4, . . .), T (x) = (0, λx2, x3, x4, . . .)

and
A(x) = (0, x2, 0, 0, . . .),

for every x = (x1, x2, . . . , xn, . . .) ∈ ℓ2(N), where N denotes the set of
all positive integers. Clearly, A ≥ 0. Further, it can be observed that
∥T∥A = ∥S∥A = λ. Now, let {ej}j∈N be the canonical orthogonal basis
of H = ℓ2(N). Then, we have

∥(T + S)(e2)∥2A = 4λ2.

Thus, 2λ ≤ ∥T + S∥A ≤ ∥T∥A + ∥S∥A = 2λ. Therefore T ∥A S.

In the following proposition, we state some basic properties of operator
seminorm-parallelism in BA1/2(H).

Proposition 2.1. Let T, S ∈ BA1/2(H). The following statements are equiva-
lent:

(1) T ∥A S.
(2) αT ∥A αS for every α ∈ C \ {0}.
(3) βT ∥A γS for every β, γ ∈ R \ {0}

Proof. Notice that equivalence (1)⇔(2) follows immediately from the defini-
tion of A-operator parallelism.
(1)⇒(3) Assume that T ∥A S. Thus ∥T + λS∥A = ∥T∥A + ∥S∥A for some
λ ∈ T. Let β, γ ∈ R \ {0}. We suppose that β ≥ γ > 0. Hence, we see that

∥βT∥A + ∥γS∥A ≥ ∥βT + λ(γS)∥A
= ∥β(T + λS)− (β − γ)(λS)∥A
≥ ∥β(T + λS)∥A − ∥(β − γ)λS∥A
= β∥T + λS∥A − (β − γ)∥S∥A
= β(∥T∥A + ∥S∥A)− (β − γ)∥S∥A
= ∥βT∥A + ∥γS∥A.

So, ∥βT + λ(γS)∥A = ∥βT∥A + ∥γS∥A for some λ ∈ T. Thus, βT ∥A γS.
(3)⇒(1) is trivial. □
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The following lemma is useful in the sequel.

Lemma 2.1. Let T, S ∈ BA1/2(H). Then the following statements are equiva-
lent:

(i) T ∥A S.
(ii) There exist a sequence of A-unit vectors {xn} in H (i.e. ∥xn∥A = 1 for

all n) and λ ∈ T such that

lim
n→+∞

⟨Txn, Sxn⟩A = λ∥T∥A ∥S∥A.

In order to prove Lemma 2.1, we need the following result.

Theorem C. ([18]) Let T, S ∈ BA1/2(H). Then, T ∥A S if and only if there
exists a sequence of A-unit vectors {xn} in H such that

lim
n→+∞

|⟨Txn, Sxn⟩A| = ∥T∥A∥S∥A. (2.1)

Remark 2.1. In addition, if ∥T∥A∥S∥A ̸= 0 and {xn} is a sequence of A-unit
vectors in H satisfying (2.1), then it also satisfies

lim
n→+∞

∥Txn∥A = ∥T∥A and lim
n→+∞

∥Sxn∥A = ∥S∥A.

Indeed, for any ε > 0 and n large enough we have

∥T∥A∥S∥A ≥ ∥S∥A∥Txn∥A ≥ |⟨Txn, Sxn⟩A| ≥ ∥S∥A∥T∥A − ε.

Hence, lim
n→+∞

∥Txn∥A = ∥T∥A. Analogously, by changing the roles between

T and S, we obtain lim
n→+∞

∥Sxn∥A = ∥S∥A.

Now, we state the proof of Lemma 2.1.

Proof of Lemma 2.1. Assume that T ∥A S, then by Theorem C there exists
a sequence of A-unit vectors {xn} in H such that

lim
n→+∞

|⟨Txn, Sxn⟩A| = ∥T∥A ∥S∥A. (2.2)

Suppose that ∥T∥A ∥S∥A ̸= 0 (otherwise the desired assertion holds trivially).
Since T is a compact subset of C, then by taking a further subsequence we
may assume that there is some λ ∈ T such that

lim
n→+∞

⟨Txn, Sxn⟩A
|⟨Txn, Sxn⟩A|

= λ.

So, by using (2.2) we get

lim
n→+∞

⟨Txn, Sxn⟩A = lim
n→+∞

⟨Txn, Sxn⟩A
|⟨Txn, Sxn⟩A|

|⟨Txn, Sxn⟩A| = λ∥T∥A∥S∥A.

The converse implication follows immediately by applying Theorem C. □

Our next goal is to characterize the A-seminorm-parallelism of opera-
tors in BA(H). To achieve this goal, we shall need some lemmas. In what
follows σ(T ), σa(T ), r(T ) and W (T ) stand for the spectrum, the approxi-
mate spectrum, the spectral radius and the numerical range of an arbitrary
element T ∈ B(H), respectively.



On A-parallelism and A-Birkhoff-James orthogonality 7

Lemma 2.2. ([20, Theorem 1.2-1]) Let T ∈ B(H). Then, σ(T ) ⊆W (T ).

Lemma 2.3. ([22, Theorem 3.3.6]) Let T ∈ B(H) be a normal operator. Then
there exists a state ψ (i.e. a functional ψ : B(H) → C with ∥ψ∥ = 1 and
ψ(T ∗T ) ≥ 0 for all T ∈ B(H)) such that ψ(T ) = ∥T∥.

Now, we are in a position to prove the following result.

Theorem 2.1. Let T, S ∈ BA(H). Then the following statements are equiva-
lent:

(1) T ∥A S.
(2) rA(S

♯AT ) = ∥S♯AT∥A = ∥T ♯AS∥A = ∥T∥A ∥S∥A.
(3) T ♯AT ∥A T ♯AS and ∥T ♯AS∥A = ∥T∥A ∥S∥A.
(4) ∥T ♯A(T + λS)∥A = ∥T∥A(∥T∥A + ∥S∥A) for some λ ∈ T.

Proof. (1)⇒(2) Assume that T ∥A S. If AT = 0 or AS = 0, then by using
(1.4) we can verify that the assertion (2) holds. Suppose that AT ̸= 0 and
AS ̸= 0, i.e. ∥T∥A ̸= 0 and ∥S∥A ̸= 0. Since T ∥A S, then by Lemma 2.1,
there exists a sequence of A-unit vectors {xn} in H satisfying

lim
n→+∞

⟨Txn, Sxn⟩A = λ∥T∥A ∥S∥A, (2.3)

for some λ ∈ T. This implies that

lim
n→+∞

ℜ (⟨Txn, λSxn⟩A) = ∥T∥A ∥S∥A, (2.4)

where ℜ(z) denotes the real part of z ∈ C. Moreover, by using the Cauchy-
Schwarz inequality it follows from

∥T∥A ∥S∥A = lim
n→+∞

|⟨Txn, Sxn⟩A| ≤ lim
n→+∞

∥Txn∥A ∥S∥A ≤ ∥T∥A ∥S∥A.

This immediately implies that lim
n→+∞

∥Txn∥A = ∥T∥A. In addition, by similar

arguments as above, we obtain lim
n→+∞

∥Sxn∥A = ∥S∥A. So, by taking into

consideration (2.4), we see that

∥T∥A + ∥S∥A ≥ ∥T + λS∥A

≥
(

lim
n→+∞

∥(T + λS)xn∥2A

) 1
2

≥
(

lim
n→+∞

[
∥Txn∥2A + 2ℜ (⟨Txn, λSxn⟩A) + ∥Sxn∥2A

]) 1
2

=
(
∥T∥2A + 2∥S∥A∥T∥A + ∥S∥2A

) 1
2

= ∥T∥A + ∥S∥A.
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Thus, we infer that ∥T + λS∥A = ∥T∥A + ∥S∥A. Hence, it can be observed
that

(∥T∥A + ∥S∥A)2 = ∥T + λS∥2A
= ∥(T + λS)♯A(T + λS)∥A
≤ ∥T ♯AT∥A + ∥λT ♯AS∥A + ∥λS♯AT∥A + ∥S♯AS∥A
≤ ∥T∥2A + 2∥T∥A ∥S∥A + ∥S∥2A
= (∥T∥A + ∥S∥A)2.

This implies that ∥T ♯AS∥A + ∥S♯AT∥A = 2∥T∥ ∥S∥. On the other hand, one
observes that PR(A)

A = APR(A)
= A. Moreover, by (1.4), we see that

∥T ♯AS∥A = ∥S♯APR(A)
TPR(A)

∥A

= sup
{
|⟨APR(A)

x, (S♯APR(A)
T )♯Ay⟩| ; x, y ∈ H, ∥x∥A = ∥y∥A = 1

}
= sup

{
|⟨S♯APR(A)

Tx, y⟩A| ; x, y ∈ H, ∥x∥A = ∥y∥A = 1
}

= sup
{
|⟨APR(A)

Tx, Sy⟩| ; x, y ∈ H, ∥x∥A = ∥y∥A = 1
}

= sup
{
|⟨S♯ATx, y⟩A| ; x, y ∈ H, ∥x∥A = ∥y∥A = 1

}
= ∥S♯AT∥A.

Hence, we deduce that

∥S♯AT∥A = ∥T ♯AS∥A = ∥T∥A ∥S∥A. (2.5)

Moreover, by using the Cauchy-Shwarz inequality, we see that

∥T∥A ∥S∥A = lim
n→+∞

|⟨Txn, Sxn⟩A|

≤ lim
n→+∞

∥S♯ATxn∥A

≤ ∥S♯AT∥A = ∥T∥A ∥S∥A,

where the last equality follows from (2.5). So, we have

lim
n→+∞

∥S♯ATxn∥A = ∥T∥A ∥S∥A. (2.6)

On the other hand, it can be observed that

∥(S♯AT − λ∥T∥A ∥S∥AI)xn∥2A = ∥S♯ATxn∥2A + ∥T∥2A ∥S∥2A
− 2∥T∥A ∥S∥Aℜ

(
λ⟨Txn, Sxn⟩A

)
.

So, by using (2.3) together with (2.6) we get

lim
n→+∞

∥∥∥(S♯AT − λ∥T∥A ∥S∥AI
)
xn

∥∥∥
A
= 0.

This implies, thought (1.2), that

lim
n→+∞

∥∥∥A(S♯AT − λ∥T∥A ∥S∥AI
)
xn

∥∥∥
R(A1/2)

= 0,
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So, by using Lemma B we get

lim
n→+∞

∥∥∥((S̃)∗T̃ − λ∥T∥A ∥S∥AIR(A1/2)

)
Axn

∥∥∥
R(A1/2)

= 0.

Since ∥Axn∥R(A1/2) = ∥xn∥A = 1. Then, λ∥T∥A ∥S∥A ∈ σa

(
(S̃)∗T̃

)
. So,

∥T∥A ∥S∥A ≤ r
(
(S̃)∗T̃

)
= r(S̃♯AT ) = rA(S

♯AT ),

where the last equality follows from Lemma B. Further, clearly rA(S
♯AT ) ≤

∥T∥A ∥S∥A. This proves, through (2.5), that

rA(S
♯AT ) = ∥T∥A ∥S∥A = ∥S♯AT∥A = ∥T ♯AS∥A,

as required.

(2) ⇒ (1) Assume that (2) holds. Then, by applying Lemma B we can
see that

r
(
(S̃)∗T̃

)
= ∥T∥A ∥S∥A.

Hence, there exists λ0 ∈ σ
(
(S̃)∗T̃

)
such that |λ0| = ∥T∥A ∥S∥A. So, by

Lemma 2.2 together with Lemma B, we have

λ0 ∈W
(
(S̃)∗T̃

)
=WA(S♯AT ).

Thus there exists a sequence of A-unit vectors {xn} in H satisfying

lim
n→+∞

⟨Txn, Sxn⟩A = λ0.

This immediately proves the desired result by applying Theorem C.
(1)⇒(3) Assume that T ∥A S. Then, by Lemma 2.1 there exist a sequence of
A-unit vectors {xn} in H and λ ∈ T such that

lim
n→+∞

⟨Txn, Sxn⟩A = λ∥T∥A ∥S∥A.

So by proceeding as in the implication (1)⇒(2), we obtain ∥T + λS∥A =
∥T∥A + ∥S∥A and ∥T ♯AS∥A = ∥T∥A ∥S∥A. This implies, by Lemma B, that

∥T̃ + λS̃∥B(R(A1/2)) = ∥T̃∥R(A1/2) + ∥S̃∥B(R(A1/2)) (2.7)

and

∥(T̃ )∗S̃∥B(R(A1/2)) = ∥T̃∥B(R(A1/2)) ∥S̃∥B(R(A1/2)).

Since (T̃ +λS̃)∗(T̃ +λS̃) is a normal operator on the Hilbert space R(A1/2),
then by using Lemma 2.3, we deduce that there exists a state ψ such that

ψ
(
(T̃ + λS̃)∗(T̃ + λS̃)

)
= ∥(T̃ + λS̃)∗(T̃ + λS̃)∥B(R(A1/2))

= ∥T̃ + λS̃∥2B(R(A1/2))

=
(
∥T̃∥B(R(A1/2)) + ∥S̃∥B(R(A1/2))

)2

,
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where the last equality follows from (2.7). Thus(
∥T̃∥B(R(A1/2)) + ∥S̃∥B(R(A1/2))

)2

= ψ
(
(T̃ )∗T̃ + λ(T̃ )∗S̃ + λ(S̃)∗T̃ + (S̃)∗S̃

)
≤ ∥(T̃ )∗T̃∥B(R(A1/2)) + ∥λ(T̃ )∗S̃ + λ(S̃)∗T̃∥B(R(A1/2)) + ∥(S̃)∗S̃∥B(R(A1/2))

≤ ∥T̃∥2B(R(A1/2)) + 2∥T̃∥B(R(A1/2)) ∥S̃∥B(R(A1/2)) + ∥S̃∥2B(R(A1/2))

=
(
∥T̃∥B(R(A1/2)) + ∥S̃∥B(R(A1/2))

)2

.

So ψ
(
(T̃ )∗T̃

)
= ∥(T̃ )∗T̃∥B(R(A1/2)) and ψ

(
λ(T̃ )∗S̃

)
= ∥(T̃ )∗S̃∥B(R(A1/2)).

Therefore, we have

∥(T̃ )∗T̃∥B(R(A1/2)) + ∥(T̃ )∗S̃∥B(R(A1/2))

= ψ
(
(T̃ )∗T̃ + λ(T̃ )∗S̃

)
≤ ∥(T̃ )∗T̃ + λ(T̃ )∗S̃∥B(R(A1/2))

≤ ∥(T̃ )∗T̃∥B(R(A1/2)) + ∥(T̃ )∗S̃∥B(R(A1/2)).

Hence, we deduce that

∥(T̃ )∗T̃ + λ(T̃ )∗S̃∥B(R(A1/2)) = ∥(T̃ )∗T̃∥B(R(A1/2)) + ∥(T̃ )∗S̃∥B(R(A1/2)),

for some λ ∈ T. Thus (T̃ )∗T̃ ∥ (T̃ )∗S̃ which implies that T̃ ♯AT ∥ T̃ ♯AS. So,
by Lemma B(v), T ♯AT ∥A T ♯AS.
(3)⇒(4) Follows obviously.
(4)⇒(1) Assume that ∥T ♯A(T+λS)∥A = ∥T∥A(∥T∥A+∥S∥A) for some λ ∈ T.
Then we see that

∥T∥A(∥T∥A + ∥S∥A) ≥ ∥T ♯A∥A∥T + λS∥A
≥ ∥T ♯A(T + λS)∥A
= ∥T∥A(∥T∥A + ∥S∥A).

So, if AT ̸= 0, then ∥T + λS∥A = ∥T∥A + ∥S∥A which yields that T ∥A S.
Furthermore, if AT = 0, then by taking (1.4) into account, we prove that
T ∥A S. □

Corollary 2.1. Let T, S ∈ BA(H). The following conditions are equivalent:

(1) T ∥A S.
(2) ωA(S

♯AT ) = ∥S♯AT∥A = ∥T ♯AS∥A = ∥T∥A ∥S∥A.

To prove Corollary 2.1, we need the following Lemma.

Lemma D. Let T ∈ BA(H). Then T is A-normaloid if and only if ωA(T ) =
∥T∥A.

Now, we state the proof of Corollary 2.1.
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Proof of Corollary 2.1. (1)⇒(2) Assume that T ∥A S. Then, by Theorem
2.1 we have rA(S

♯AT ) = ∥S♯AT∥A = ∥T ♯AS∥A = ∥T∥A ∥S∥A. In particular,
S♯AT is A-normaloid. So, by Lemma D, ωA(S

♯AT ) = ∥S♯AT∥A.
(2)⇒(1) Assume that ωA(S

♯AT ) = ∥S♯AT∥A = ∥T ♯AS∥A = ∥T∥A ∥S∥A.
In particular, by Lemma D, we conclude that S♯AT is A-normaloid. So, by
[15, Proposition 4] there exists a sequence of A-unit vectors {xn} such that

lim
n→+∞

∥S♯ATxn∥A = ∥S♯AT∥A and lim
n→+∞

|⟨S♯ATxn, xn⟩A| = ωA(S
♯AT ).

This implies that

lim
n→+∞

|⟨Txn, Sxn⟩A| = ∥T∥A ∥S∥A.

Thus, by Theorem C, we conclude that T ∥A S. □

Next, we investigate the case when an operator T ∈ BA(H) is A-parallel
to the identity operator.

Theorem 2.2. Let T ∈ BA(H). Then the following statements are equivalent:

(1) T ∥A I.
(2) T ∥A T ♯A .
(3) T ♯AT ∥A T ♯A .

Proof. (1)⇔(2) Assume that T ∥A I. Then, by Lemma B (v), T̃ ∥ IR(A1/2).

So, ∥T̃ + λIR(A1/2)∥B(R(A1/2)) = ∥T̃∥B(R(A1/2)) + 1, for some λ ∈ T. Then by
Lemma 2.3 there exists a state ψ such that such that

ψ
(
(T̃ + λIR(A1/2))

∗(T̃ + λIR(A1/2))
)

= ∥(T̃ + λIR(A1/2))
∗(T̃ + λIR(A1/2))∥B(R(A1/2))

= ∥T̃ + λIR(A1/2)∥2B(R(A1/2))

=
(
∥T̃∥B(R(A1/2)) + 1

)2

.

So, we see that(
∥T̃∥B(R(A1/2)) + 1

)2

= ψ
(
(T̃ + λIR(A1/2))(T̃ + λIR(A1/2))

∗
)

= ψ
(
T̃ (T̃ )∗

)
+ ψ

(
λT̃

)
+ ψ

(
λ(T̃ )∗

)
+ 1

≤ ∥T̃ (T̃ )∗∥B(R(A1/2)) + ∥λT̃∥B(R(A1/2)) + ∥λ(T̃ )∗∥B(R(A1/2)) + 1

= ∥T̃∥2B(R(A1/2)) + 2∥T̃∥B(R(A1/2)) + 1 =
(
∥T̃∥B(R(A1/2)) + 1

)2

.
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Therefore ψ(λT̃ ) = ψ
(
λ(T̃ )∗

)
= ∥T̃∥B(R(A1/2)). This yields that

∥T̃∥B(R(A1/2)) + ∥(T̃ )∗∥B(R(A1/2)) = ψ
(
λT̃ + λ(T̃ )∗

)
≤ ∥λT̃ + λ(T̃ )∗∥

= ∥T̃ + λ2(T̃ )∗∥B(R(A1/2))

≤ ∥T̃∥B(R(A1/2)) + ∥(T̃ )∗∥B(R(A1/2)).

Hence,

∥T̃ + λ2(T̃ )∗∥B(R(A1/2)) = ∥T̃∥B(R(A1/2)) + ∥(T̃ )∗∥B(R(A1/2)),

in which λ2 ∈ T. So T̃ ∥ (T̃ )∗. This implies, by Lemma B, that T̃ ∥ T̃ ♯A

which, in turn, yields that T ∥A T ♯A .
Conversely, assume that T ∥A T ♯A this implies, by Lemma B, that

T̃ ∥ (T̃ )∗ which, in turn, yields that

∥T̃ + λ(T̃ )∗∥B(R(A1/2)) = 2∥T̃∥B(R(A1/2)),

for some λ ∈ T. Since T̃ + λ(T̃ )∗ is a normal operator on the Hilbert space
R(A1/2), then by Lemma 2.3, there exists a state ψ such that∣∣∣ψ (

T̃ + λ(T̃ )∗
)∣∣∣ = ∥T̃ + λ(T̃ )∗∥B(R(A1/2)) = 2∥T̃∥B(R(A1/2)).

Hence, we obtain

2∥T̃∥B(R(A1/2)) =
∣∣∣ψ (

T̃ + λ(T̃ )∗
)∣∣∣ ≤ 2|ψ(T̃ )| ≤ 2∥T̃∥B(R(A1/2)).

This implies that |ψ(T̃ )| = ∥T̃∥B(R(A1/2)). So, there exists a number δ ∈ T
such that ψ(T̃ ) = δ∥T̃∥B(R(A1/2)). Thus, we deduce that

∥T̃∥B(R(A1/2)) + 1 = ψ
(
δT̃ + IR(A1/2)

)
≤ ∥δT̃ + IR(A1/2)∥B(R(A1/2))

= ∥T̃ + δIR(A1/2)∥B(R(A1/2)) ≤ ∥T̃∥B(R(A1/2)) + 1.

So ∥T̃ + δIR(A1/2)∥B(R(A1/2)) = ∥T̃∥B(R(A1/2)) + 1. This immediately implies

that T̃ ∥ IR(A1/2). Hence, T ∥A I as required.

(1)⇔(3) Follows from Theorem 2.1.
□

In the next two theorems, we give some characterizations when the
A-Davis Wielandt radius of semi-Hilbert space operators attains its upper
bound for operators in BA1/2(H) and BA(H), respectively.

Theorem 2.3. Let T ∈ BA1/2(H). Then, the following assertions are equiva-
lent:

(1) dωA(T ) =
√
ωA(T )2 + ∥T∥4A.

(2) T ∥A I.
(3) T is A-normaloid.
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(4) ω2
A(T )A ≥ T ∗AT.

Proof. The equivalences (1) ⇔ (2) and (2) ⇔ (3) have been proved in [18].
(3) ⇔ (4) : By Lemma D, T is A-normaloid if and only if ωA(T ) = ∥T∥A. On
the other hand, it be observed that

ωA(T ) = ∥T∥A ⇔ ∥Tx∥A ≤ ωA(T )∥x∥A, ∀x ∈ H
⇔ ∥Tx∥2A ≤ ωA(T )

2∥x∥2A, ∀x ∈ H
⇔ ⟨T ∗ATx, x⟩A ≤ ⟨ωA(T )

2x, x⟩A, ∀x ∈ H
⇔ ⟨(T ∗AT − ωA(T )

2A)x, x⟩ ≤ 0, ∀x ∈ H
⇔ ω2

A(T )A ≥ T ∗AT.

This achieves the proof. □

Theorem 2.4. Let T ∈ BA(H). The following statements are equivalent:

(1) dωA(T ) =
√
ω2
A(T ) + ∥T∥4A.

(2) There exists a sequence of A-unit vectors {xn} in H such that

lim
n→+∞

∣∣⟨T 2xn, xn⟩A
∣∣ = ∥T∥2A.

(3) There exists a sequence of A-unit vectors {xn} in H such that

lim
n→+∞

∣∣⟨TT ♯ATxn, xn⟩A
∣∣ = ∥T∥3A.

(4) ωA(T
2) = ∥T∥2A.

Proof. (1) ⇔ (2) : By Theorem 2.3, we have dωA(T ) =
√
ω2
A(T ) + ∥T∥4A if

and only if T ∥A I which in turn equivalent, by Theorem 2.2, to T ∥A T ♯A .
On the other hand, in view of Theorem C, we have T ∥A T ♯A if and only if
there exists a sequence of A-unit vectors {xn} in H such that

lim
n→+∞

|⟨Txn, T ♯Axn⟩A| = ∥T∥A∥T ♯A∥A.

So, we reach the equivalence (1) ⇔ (2) since ∥T∥A = ∥T ♯A∥A.
(1) ⇔ (3) : By proceeding as above and taking into consideration

Theorem 2.2, we deduce that dωA(T ) =
√
ω2
A(T ) + ∥T∥4A if and only if

T ♯AT ∥A T ♯A which is in turn equivalent, by Theorem 2.2, to the existence
of a sequence of A-unit vectors {xn} in H such that

lim
n→+∞

|⟨T ♯ATxn, T
♯Axn⟩A| = ∥T ♯AT∥A∥T ♯A∥A.

So, the desired equivalence follows since ∥T ♯A∥A = ∥T∥A =
√

∥T ♯AT∥A and

|⟨T ♯ATxn, T
♯Axn⟩A| = |⟨TT ♯ATxn, xn⟩A|.

(1) ⇔ (4) : If dωA(T ) =
√
ω2
A(T ) + ∥T∥4A, then by Theorem 2.3 T is

A-normaloid. This implies that T is A-spectraloid. So, by [15, Theorem 6]
ωA(T

2) = ω2
A(T ). Conversely, assume that ωA(T

2) = ∥T∥2A. This implies
that the assertion (2) holds and so (1) holds. □
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For x, y ∈ H, we recall from [6] that the A-rank one operators is given
by

x⊗A y : H → H, z 7→ (x⊗A y)(z) := ⟨z, y⟩Ax.
A characterization of the A-parallelism of x ⊗A y and the identity operator
is stated as follows.

Theorem 2.5. Let x, y ∈ H, the following conditions are equivalent:

(1) x⊗A y ∥A I.

(2) dωA(x⊗A y) =
√
ω2
A(x⊗A y) + ∥x⊗A y∥4A.

(3) The vectors A1/2x and A1/2y are linearly dependent.
(4) The vectors Ax and Ay are linearly dependent.

To prove Theorem 2.5 we need the following lemma.

Lemma E. ([6]) Let x, y ∈ H. Then, the following statement hold:

(i) ∥x⊗A y∥A = ∥x∥A∥y∥A.
(ii) ωA(x⊗A y) =

1
2 (|⟨x, y⟩A|+ ∥x∥A∥y∥A).

Now we are ready to prove Theorem 2.5.

Proof of Theorem 2.5. (1) ⇔ (2) : Follows immediately from Theorem 2.3.
(2) ⇔ (3) : By the equivalence (2)⇔(3) of Theorem 2.3 we infer that

dωA(x⊗A y) =
√
ω2
A(x⊗A y) + ∥x⊗A y∥4A ⇔ ωA(x⊗A y) = ∥x⊗A y∥A.

Moreover, by using Lemma E, we see that

ωA(x⊗A y) = ∥x⊗A y∥A ⇔ 1
2 (|⟨x, y⟩A|+ ∥x∥A∥y∥A) = ∥x∥A∥y∥A

⇔ |⟨x, y⟩A| = ∥x∥A∥y∥A

On the other hand |⟨x, y⟩A| = ∥x∥A∥y∥A if and only if the vectors A1/2x and
A1/2y are linearly dependent.

(3) ⇔ (4) : This equivalence follows immediately sinceN (A) = N (A1/2).
Hence, the proof is complete. □

3. Further characterizations of A-seminorm-parallelism

Our aim in this section is to give further characterizations of A-seminorm-
parallelism via A-Birkhoff-James orthogonality of A-bounded operators. Our
first result in this section reads as follows.

Theorem 3.1. Let T, S ∈ BA1/2(H), then the following conditions are equiva-
lent:

(1) T ∥A S.

(2) T ⊥BJ
A ∥S∥AT − λ∥T∥AS, for some λ ∈ T.

(3) S ⊥BJ
A λ∥T∥AS − ∥S∥AT, for some λ ∈ T.

In addition, if ∥T∥A∥S∥A ̸= 0, then (1) to (3) are also equivalent to
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(4) There exist a sequence of A-unit vectors {xn} in H and λ ∈ T such that

lim
n→+∞

∥Sxn∥A = ∥S∥A and lim
n→+∞

∥∥∥∥Txn − λ
∥T∥A
∥S∥A

Sxn

∥∥∥∥
A

= 0.

(5) There exist a sequence of A-unit vectors {xn} in H and λ ∈ T such that

lim
n→+∞

∥Txn∥A = ∥T∥A and lim
n→+∞

∥∥∥∥Sxn − λ
∥S∥A
∥T∥A

Txn

∥∥∥∥
A

= 0.

In order to prove Theorem 3.1 we need to recall from [27] the following
result.

Theorem F. ([27]) Let T, S ∈ BA1/2(H). Then, T ⊥BJ
A S if and only if there

exists a sequence of A-unit vectors {xn} in H such that

lim
n→+∞

∥Txn∥A = ∥T∥A and lim
n→+∞

⟨Txn, Sxn⟩A = 0.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. (1) ⇔ (2) : Assume that T ∥A S. If ∥S∥A = 0, then
by using (1.4) it can be seen that the assertion (2) holds. Now, suppose that
∥S∥A ̸= 0. Since T ∥A S, then by Lemma 2.1 there exist a sequence of A-unit
vectors {xn} in H and λ ∈ T such that

lim
n→+∞

⟨Txn, Sxn⟩A = λ∥T∥A∥S∥A.

So, by Remark 2.1 lim
n→+∞

∥Txn∥A = ∥T∥A. Furthermore, we see that

lim
n→+∞

⟨Txn, (∥S∥AT − λ∥T∥AS)xn⟩A

= lim
n→+∞

∥S∥A∥Txn∥2A − λ∥T∥A⟨Txn, Sxn⟩A

= ∥S∥A∥T∥2A − ∥T∥2A∥S∥A = 0.

Thus, in view of Theorem F, the second assertion holds. Conversely, assume
T ⊥BJ

A ∥S∥AT − λ∥T∥AS, for some λ ∈ T. If ∥T∥A = 0, then obviously
T ∥A S. Suppose that ∥T∥A ̸= 0. By Theorem F, there exists a sequence of
A-unit vectors {yn} in H such that

lim
n→+∞

∥Tyn∥A = ∥T∥A and lim
n→+∞

⟨Tyn, (∥S∥AT − λ∥T∥AS)yn⟩A = 0.

Then, we deduce that

lim
n→+∞

⟨Tyn, Syn⟩A =
λ

∥T∥A
lim

n→+∞
∥S∥A∥Tyn∥2A = λ∥T∥A∥S∥A.

(1) ⇔ (3) : The proof is analogous to the previous equivalence by changing
the roles between T and S.
(1) ⇔ (4) : By Lemma 2.1 and Remark 2.1, there exist a sequence of A-unit
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vectors {xn} in H and λ ∈ T such that lim
n→+∞

⟨Txn, Sxn⟩ = λ∥T∥A∥S∥A,
lim

n→+∞
∥Txn∥A = ∥T∥A and lim

n→+∞
∥Sxn∥A = ∥S∥A. So, since∥∥∥∥Txn − λ

∥T∥A
∥S∥A

Sxn

∥∥∥∥2
A

= ∥Txn∥2A − λ
∥T∥A
∥S∥A

⟨Txn, Sxn⟩A − λ
∥T∥A
∥S∥A

⟨Sxn, Txn⟩A +
∥T∥2A
∥S∥2A

∥Sxn∥2A,

then we deduce that lim
n→+∞

∥∥∥Txn − λ∥T∥A

∥S∥A
Sxn

∥∥∥2
A

= 0. Conversely, suppose

that (4) holds. Then, we see that

∥S∥A + ∥T∥A ≥ ∥T + λS∥A
≥ ∥Txn + λSxn∥A

=

∥∥∥∥(Txn − λ
∥T∥A
∥S∥A

Sxn)− (−λSxn − λ
∥T∥A
∥S∥A

Sxn)

∥∥∥∥
A

≥
∥∥∥∥λSxn + λ

∥T∥A
∥S∥A

Sxn

∥∥∥∥
A

−
∥∥∥∥Txn − λ

∥T∥A
∥S∥A

Sxn

∥∥∥∥
A

= (∥S∥A + ∥T∥A)
∥Sxn∥A
∥S∥A

−
∥∥∥∥Txn − λ

∥T∥A
∥S∥A

Sxn

∥∥∥∥
A

.

By taking limits, we get ∥S∥A + ∥T∥A = ∥T + λS∥A. Then T ∥A S.
(1) ⇔ (5) : The proof is analogous to the previous equivalence by changing
the roles between T and S. □

Corollary 3.1. Let T ∈ BA(H). Then the following statements are equivalent:

(1) T ∥A I.
(2) T p ∥A I for every p ∈ N.
(3) T p ∥A (T ♯A)p for every p ∈ N.

Proof. (1)⇒(2) Assume that T ∥A I. Then, by Theorem 3.1, there exists a
sequence of A-unit vectors {xn} in H and λ ∈ T such that

lim
n→+∞

∥∥∥Txn − λ∥T∥Axn
∥∥∥
A
= 0.

For every i ∈ N we have∥∥∥ (T i+1 − λi+1∥T∥i+1
A I

)
xn

∥∥∥
A

=
∥∥∥T (

T i − λi∥T∥iAI
)
xn + λi∥T∥iA (T − λ∥T∥AI)xn

∥∥∥
A

≤ ∥T∥A
∥∥∥(T i − λi∥T∥iAI)xn

∥∥∥
A
+ ∥T∥iA

∥∥∥(T − λ∥T∥AI)xn
∥∥∥
A
.

So, by induction, it can be shown that for every p ∈ N we have

lim
n→+∞

∥∥∥(T p − λp∥T∥pAI)xn
∥∥∥
A
= 0. (3.1)
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This implies, by Lemma B, that

lim
n→+∞

∥∥∥((T̃ )p − λp∥T∥pAIR(A1/2)

)
Axn

∥∥∥
B(R(A1/2))

= 0,

for every p ∈ N. Hence, λp∥T∥pA ∈ σa

(
(T̃ )p

)
. So, we obtain

∥T̃∥pB(R(A1/2))
≤ r

(
(T̃ )p

)
≤

∥∥∥(T̃ )p∥∥∥
B(R(A1/2))

≤
∥∥∥T̃∥∥∥p

B(R(A1/2))
.

Thus, an application of Lemma B(i) gives ∥T∥pA = ∥T p∥A. So, by taking into
consideration (3.1), we get

lim
n→+∞

∥∥∥(T p − λp∥T p∥AI)xn
∥∥∥
A
= 0,

for every p ∈ N. Therefore, by Theorem 3.1, we get T p ∥A I.

Now, the implications (2)⇒(3) and (3)⇒(1) follow immediately by using
the equivalences of Theorem 2.2. □

Remark 3.1. Notice that the equivalence (1) ⇔ (2) in Corollary 3.1 holds also
for A-bounded operators.

A special case of A-seminorm-parallelism between an A-bounded oper-
ator T ∈ BA1/2(H) and the identity operator, is the following equation:

∥T + I∥A = ∥T∥A + 1. (3.2)

If T ∈ BA1/2(H) and satisfies (3.2), we shall say that T satisfies the A-
Daugavet equation. We remind here that the first person who study (3.2) for
A = I was I. K. Daugavet [11]. The equation is one useful property in solving
a variety of problems in approximation theory. Abramovich et al. [1] proved
that T ∈ B(H) satisfies the I-Daugavet equation (respect to the uniform
norm) if and only if ∥T∥ lies in the approximate point spectrum of T .

In the following theorem we shall characterize A-bounded operators
which satisfy the A-Daugavet equation.

Theorem 3.2. Let T ∈ BA1/2(H). Then the following conditions are equiva-
lent:

(1) T satisfies the A-Daugavet equation, i.e. ∥T + I∥A = ∥T∥A + 1.

(2) ∥T∥A ∈WA(T ).

(3) I ⊥BJ
A ∥T∥AI − T.

(4) T ⊥BJ
A T − ∥T∥AI.

Proof. (2) ⇒ (1) Assume that ∥T∥A ∈WA(T ). Then, there exits a sequence
of A-unit vectors {xn} in H such that lim

n→+∞
⟨Txn, xn⟩A = ∥T∥A. Thus

lim
n→+∞

ℜ(⟨Txn, xn⟩)A = ∥T∥A. (3.3)
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Further, since

∥T∥2A + 2|⟨Txn, xn⟩A|+ 1 ≤ ∥T∥2A + 2∥Txn∥A + 1

≤ ∥T∥2A + 2∥T∥A + 1 = (∥T∥A + 1)2,

for all n ∈ N, then we get

lim
n→+∞

∥Txn∥A = ∥T∥A. (3.4)

Hence, by using (3.3) together with (3.4) we see that

(∥T∥A + 1)2 = lim
n→+∞

∥Txn∥2A + 2 lim
n→+∞

ℜ(⟨Txn, xn⟩A) + 1

= lim
n→+∞

∥(T + I)xn∥2A ≤ ∥T + I∥2A ≤ (∥T∥A + 1)2.

So ∥T + I∥A = ∥T∥A + 1.
(1) ⇒ (2) Suppose that ∥T + I∥A = ∥T∥A + 1. Then, by (1.3) there

exists a sequence of A-unit vectors {xn} in H such that

lim
n→+∞

∥Txn + xn∥A = ∥T∥A + 1. (3.5)

Since
∥Txn + xn∥A ≤ ∥Txn∥A + 1 ≤ ∥T∥A + 1,

then, by using (3.5), we conclude that

lim
n→+∞

∥Txn∥A = ∥T∥A. (3.6)

On the other hand, since

∥Txn + xn∥2A = ∥Txn∥2A + 1 + 2ℜ(⟨Txn, xn⟩A),
for all n ∈ N, then it follows from (3.5) together with (3.6) that

lim
n→+∞

ℜ(⟨Txn, xn⟩A) = ∥T∥A, (3.7)

for all n ∈ N. Further, if ℑ(z) denotes the imaginary part of z ∈ C, then for
every n ∈ N, we see that

ℜ2(⟨Txn, xn⟩A) ≤ ℜ2(⟨Txn, xn⟩A) + ℑ2(⟨Txn, xn⟩A) = |⟨Txn, xn⟩A|
2 ≤ ∥T∥2A.

So, by (3.7), we infer that lim
n→+∞

ℑ(⟨Txn, Sxn⟩A) = 0. This yields, through

(3.7), that

lim
n→+∞

⟨Txn, xn⟩A = ∥T∥A.

Thus, we conclude that ∥T∥A ∈WA(T ).
(1) ⇔ (3) Assume that T satifies the A-Daugavet equation. Then, by

the equivalence between (1) and (2), we have ∥T∥A ∈WA(T ). So, there exists
a sequence of A-unit vectors {xn} in H satisfying

lim
n→+∞

⟨Txn, xn⟩A = ∥T∥A. (3.8)

This implies that

lim
n→+∞

∥Ixn∥A = ∥I∥A = 1 and lim
n→+∞

⟨(T − ∥T∥AI)xn, xn⟩A = 0,
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then by Theorem F, we have I ⊥BJ
A ∥T∥AI − T . The converse is analogous.

(1) ⇔ (4) Assume that T satifies the A-Daugavet equation. Let {xn} a se-
quence of A-unit vectors in H satisfying (3.8). Then

∥T∥A ≥ ∥Txn∥A ≥ |⟨Txn, xn⟩A| ≥ ∥T∥A − ε,

for any ε > 0 and n large enough. Hence, lim
n→+∞

∥Txn∥A = ∥T∥A. Futher-
more,

lim
n→+∞

⟨Txn, (T − ∥T∥AI)xn⟩A = lim
n→+∞

∥Txn∥2A − ∥T∥A⟨Txn, xn⟩A = 0.

So, by Theorem F, we deduce that T ⊥BJ
A T − ∥T∥AI. Conversely, assume

that T ⊥BJ
A T − ∥T∥AI. If ∥T∥A = 0, then by using (1.4) we see that the

assertion (1) holds trivially. Now, suppose that ∥T∥A ̸= 0. By Theorem F,
there exists a sequence of A-unit vectors {yn} in H such that

lim
n→+∞

∥Tyn∥A = ∥T∥A and lim
n→+∞

⟨Tyn, (T − ∥T∥AI)yn⟩A = 0.

So, it follows that

lim
n→+∞

⟨Tyn, yn⟩A =
1

∥T∥A
lim

n→+∞
∥Tyn∥2A = ∥T∥A,

i.e. ∥T∥A ∈ WA(T ). Hence, by the equivalence (1)⇔(2), the assertion (1)
holds. Therefore, the proof is complete. □

4. A-Bikhorff-James orthogonality and distance formulas

We begin this section by recalling from [27] the following definition.

Definition 4.1. Let T, S ∈ BA1/2(H). The A-distance between T and S, de-
noted by dA(T,CS), is defined as

dA(T,CS) := inf
γ∈C

∥T + γS∥A.

Our first result in this section provides an upper bound for the nonneg-
ative quantity ∥T∥2A − ω2

A(T ), with T ∈ BA1/2(H) related to dA(T,CI).

Theorem 4.1. Let T ∈ BA1/2(H). Then,

∥T∥2A − ω2
A(T ) ≤ d2A(T,CI). (4.1)

Proof. Notice first that for any a, b ∈ H with b ̸= 0, we have

inf
λ∈C

∥a− λb∥2 =
∥a∥2∥b∥2 − |⟨a, b⟩|2

∥b∥2
.

This implies that

∥a∥2∥b∥2 − |⟨a, b⟩|2 ≤ ∥b∥2∥a− λb∥2, (4.2)

for any a, b ∈ H and λ ∈ C. Let x, y ∈ H and λ ∈ C. By choosing a = A1/2x
and b = A1/2y in (4.2), we obtain

∥x∥2A∥y∥2A − |⟨x, y⟩A|2 ≤ ∥y∥2A∥x− λy∥2A, (4.3)
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Now, by choosing in (4.3) x = Tz and y = z with z ∈ H, ∥z∥A = 1, we get

∥Tz∥2A − |⟨Tz, z⟩A|2 ≤ ∥Tz − λz∥2A,
By taking the supremum over all z ∈ H with ∥z∥A = 1, we obtain

∥T∥2A − ω2
A(T ) ≤ inf

λ∈C
∥T − λI∥2A.

This finishes the proof of the theorem. □

Remark 4.1. Notice that the third author proved in [17, Theorem 2.22.] that
for every T ∈ BA1/2(H) we have

ω2
A(T ) ≤

1

2
(ωA(T

2) + ∥T∥2A). (4.4)

So, by combining (4.4) together with (4.1), we obtain

ω2
A(T )− ωA(T

2) ≤ 1

2

(
∥T∥2A − ωA(T

2)
)
≤ ∥T∥2A − ωA(T

2) ≤ d2A(T,CI),

for any T ∈ BA1/2(H).

Next, we recall from [27] that the A-minimum modulus of an operator
T ∈ BA1/2(H) is given by

mA(T ) = inf
{
∥Tx∥A ; x ∈ H, ∥x∥A = 1

}
.

This concept is useful in characterizing the A-Bikhorff-James orthogonality
in BA1/2(H). More precisely, we have the following result.

Theorem G. ([27, Theorem 3.2]) Let T, S ∈ BA1/2(H) with mA(S) > 0. Then
there exists a unique t0 ∈ C such that

∥(T − t0S) + γS∥2A ≥ ∥(T − t0S)∥2A + |γ|2m2
A(S), (4.5)

for every γ ∈ C. Futhermore, such t0 satisfies the following property

∥T − t0S∥A = dA(T,CS).

Inspiring from the definition of center of mass in the case of Hilbert space
operators due to Barra and Bouzmagour (see [5]), we define the following new
concept.

Definition 4.2. Given T, S ∈ BA1/2(H) with mA(S) > 0. The A-center of
mass of T relatively to S, denoted by cA(T, S), is defined to be the unique
t0 ∈ C specified in Theorem G. That is

∥T − cA(T, S)S∥A = dA(T,CS).

For a given T, S ∈ BA1/2(H) with mA(S) > 0, Zamani proved in [27,
Theorem 3.4] that

d2A(T,CS) = sup
∥x∥A=1

(
∥Tx∥2A − |⟨Tx, Sx⟩A|2

∥Sx∥2A

)
. (4.6)

One of the methods to compute the center of mass of an operator is Williams’s
theorem [25]. However, it is not usually easy to determine the exact value of
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it even in the finite dimensional case. In what follows, we investigate how to
determine explicitly the number cA(T, S).

Theorem 4.2. Let T, S ∈ BA1/2(H) with mA(S) > 0. Then

cA(T, S) = lim
n→+∞

⟨Txn, Sxn⟩A
∥Sxn∥2A

,

where {xn} be a sequence of A-unit vectors, approximating the supremum in
(4.6).

Proof. By the hypothesis, mA(S) > 0, we can conclude that ∥Sx∥A ≥
mA(S) > 0 for all x ∈ H with ∥x∥A = 1. For sake of simplicity we de-
note cA = cA(T, S). Let {xn} be a sequence of A-unit vectors, approximating
the supremum in (4.6). Then∣∣∣∣ ⟨Txn, Sxn⟩A∥Sxn∥A

− cA∥Sxn∥A
∣∣∣∣2

=
|⟨Txn, Sxn⟩A|2

∥Sxn∥2A
− 2ℜ(⟨Txn, cASxn⟩A) + |cA|2∥Sxn∥2A

= ∥(T − cAS)xn∥2A − ∥Txn∥2A +
|⟨Txn, Sxn⟩A|2

∥Sxn∥2A

≤ ∥(T − cAS)∥2A − ∥Txn∥2A +
|⟨Txn, Sxn⟩A|2

∥Sxn∥2A
.

As ∥Sx∥A ≥ mA(S) for any ∥x∥A = 1, we obtain the following inequality∣∣∣∣ ⟨Txn, Sxn⟩A∥Sxn∥2A
− cA

∣∣∣∣ ≤ 1

mA(S)

∣∣∣∣ ⟨Txn, Sxn⟩A∥Sxn∥A
− cA∥Sxn∥A

∣∣∣∣ n→+∞−−−−−→ 0.

□

Two particular cases of the special interest are considered in the next
statement, first one when S = T ♯A and later when in addition T is A-normal.

Corollary 4.1. Let T ∈ BA(H) with mA(T
♯A) > 0. Then

cA(T, T
♯A) = lim

n→+∞

⟨T 2xn, xn⟩A
∥T ♯Axn∥2A

,

where {xn} be a sequence of A-unit vectors, approximating the supremum in
(4.6). In addition, if T is A-normal, then |cA(T, T ♯A)| ≤ 1.

The following theorem is a natural generalization of a result due to Fujii
and Prasanna in [19].

Theorem 4.3. Let T ∈ BA1/2(H). Then

WA(T ) ⊆ D
(
cA(T, I), dA(T,CI)

)
,

where D(λ0, r0) denotes the closed disc centered at λ0 and with radius r0.
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Proof. We split the proof in two cases.
Case 1: cA(T, I) = 0 i.e. dA(T,CI) = ∥T∥A. Then for any x ∈ H with

∥x∥A = 1, we have

|⟨Tx, x⟩A| ≤ ωA(T ) ≤ ∥T∥A = dA(T,CI). (4.7)

Case 2: cA(T, I) ̸= 0 i.e. dA(T,CI) = ∥T − cA(T, I)I∥A. Let us consider
T0 := T − cA(T, I)I. Then T0 ∈ BA1/2(H) and cA(T0, I) = 0. Applying (4.7),
we obtain for any x ∈ H, ∥x∥A = 1

|⟨Tx, x⟩A − cA(T, I)| = |⟨T0x, x⟩A| ≤ ∥T0∥A = dA(T,CI).

This completes the proof. □

Proposition 4.1. Let T ∈ BA1/2(H). Then

dA(T,CI) ≤ ∥T∥AdA(I,CT ). (4.8)

Proof. Let x ∈ H with ∥x∥A = 1. One observes that

αA(T )∥Tx∥A ≤ |⟨Tx, x⟩A|,

where αA(T ) = inf
{

|⟨Ty,y⟩A|
∥Ty∥A

: ∥Ty∥A ̸= 0, ∥y∥A = 1
}
if ∥T∥A ̸= 0 or αA(T ) =

0 if ∥T∥A = 0. Thus, we see that

∥Tx∥2A − |⟨Tx, x⟩A|2 ≤
(
1− α2

A(T )
)
∥Tx∥2A ≤ d2A(I,CT )∥Tx∥2A.

Now, calculating the supremum of the both sides, over all x ∈ H with ∥x∥A =
1, we complete the proof. □

Remark 4.2. By combining (4.1) together with (4.8), we obtain

∥T∥2A − ω2
A(T ) ≤ d2A(T,CI) ≤ ∥T∥2Ad2A(I,CT ).

Corollary 4.2. Let T ∈ BA1/2(H). If T ⊥BJ
A I, then I ⊥BJ

A T .

Proof. By (4.8), we have

∥T∥A = dA(T,CI) ≤ ∥T∥AdA(I,CT ).

So, if ∥T∥A ̸= 0, then 1 ≤ dA(I,CT ) ≤ ∥I∥A = 1, i.e. dA(I,CT ) = ∥I∥A = 1.
On the other hand, if ∥T∥A = 0 then ∥Tx∥A = 0 for all x ∈ H, ∥x∥A = 1.

From [27, Theorem 3.4], we have that

d2A(I,CT ) = sup{∥Ix∥2A ; ∥x∥A = 1} = 1 = ∥I∥A.

In conclusion, in both cases, we obtain that I ⊥BJ
A T . □

The converse of the previous result is false in general, as we see in the
next example

Example 4.1. Consider in H = C3 with the usual uniform norm and let

{e1, e2, e3} be the canonical basis for H. Let A =

1 0 0
0 1 0
0 0 0

 . Then A = PM
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the orthogonal projection on M = gen{e1, e2} and A2 = A∗ = A. Now,

consider T =

2 0 0
0 −1 0
0 0 1

 ∈ BA1/2(H). Let x = αe1 + βe2 + γe3 ∈ H then

∥x∥2A = ∥(α, β, γ)∥2A = ⟨x, x⟩A = ⟨Ax,Ax⟩ = ∥Ax∥2 = |α|2+|β|2 = ∥(α, β)∥2.

Observe that ∥(α, β, γ)∥2A = 1 if and only if ∥(α, β)∥2 = 1. Further, we have

∥T∥2A = sup{∥Tx∥2A : x ∈ C3, ∥x∥A = 1} = sup{∥ATx∥2 : x ∈ C3, ∥x∥A = 1}
= sup{∥Tx∥2 : x ∈ C2, ∥x∥ = 1} = ∥T∥2 = 4,

where T =

(
2 0
0 −1

)
∈ B(C2). If In denotes the identity operator in B(Cn),

then

inf
λ∈C

∥T − λI3∥A = inf
λ∈C

∥T − λI2∥ =
3

2
< ∥T∥A = 2,

i.e. T is not A-Birkhoff-James to I3. On the other hand,

inf
λ∈C

∥I3 − λT∥A = inf
λ∈C

∥I2 − λT∥ = 1 = ∥I3∥A = 1,

that is I3 ⊥BJ
A T.

The following result relates A-Birkhoff-James orthogonality with the
attainment of the lower bound of the A-Davis-Wielandt radius.

Theorem 4.4. Let T ∈ BA1/2(H) such that dωA(T ) = max{ωA(T ), ∥T∥2A}.
Then T ⊥BJ

A I.

Proof. We separate in two different cases.
Case 1: Suppose dωA(T ) = ∥T∥2A and take a sequence of A-unit vectors

{yn}n∈N such that lim
n→+∞

∥Tyn∥2A = ∥T∥2A. Then

∥Tyn∥2A ≤
√

|⟨Tyn, yn⟩A|
2
+ ∥Tyn∥4A ≤ dωA(T ) = ∥T∥2A.

Therefore, we infer that lim
n→+∞

|⟨Tyn, yn⟩A|
2
= 0. This is equivalent, by The-

orem F, to T ⊥A
BJ I.

Case 2: Suppose dωA(T ) = ωA(T ) and take a sequence of A-unit vectors
{zn}n∈N such that lim

n→+∞
|⟨Tzn, zn⟩A| = ωA(T ). Then

|⟨Tzn, zn⟩A| ≤
√
|⟨Tzn, zn⟩A|

2
+ ∥Tzn∥4A ≤ dωA(T ) = ωA(T ),

therefore, lim
n→+∞

∥Tzn∥4A = 0. But

|⟨Tzn, zn⟩A| ≤ ∥Tzn∥A → 0,

thus ωA(T ) = 0 and ∥T∥A = 0 ≤ ∥T + λI∥A for every λ ∈ C. □

We arrive to the next conclusion as a combination of Corollary 4.2 and
Theorem 4.4.
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Corollary 4.3. Let T ∈ BA1/2(H) such that dωA(T ) = max{ωA(T ), ∥T∥2A}.
Then T ⊥BJ

A I and I ⊥BJ
A T .

Remark 4.3. If T = x⊗A y with ∥x∥A, ∥y∥A ̸= 0, the attainment of the lower
bound of dωA(T ) implies that x ⊥A y.

Indeed, first of all, if u, v ∈ H, then one may observe that

1

2
(|⟨u, v⟩A|+ ∥u∥A∥v∥A) ≤ ∥u∥A∥v∥A.

So, if dωA(T ) attains its lower bound we may assume that dwA(T ) = ∥T∥2A =
∥x∥2A∥y∥2A. Then, we see that∣∣∣∣〈T y

∥y∥A
,

y

∥y∥A
〉
A

∣∣∣∣ = ∣∣∣∣〈x, y

∥y∥A
〉
A

〈 y

∥y∥A
, y
〉
A

∣∣∣∣ = ∣∣∣∣ 1

∥y∥2A
⟨x, y⟩A∥y∥2A

∣∣∣∣
= |⟨x, y⟩A|,

and ∥∥∥∥T y

∥y∥A

∥∥∥∥4
A

=
1

∥y∥4A

∥∥〈y, y〉
A
x
∥∥4
A
= ∥y∥4A∥x∥4A.

Therefore, we have√∣∣∣∣〈T y

∥y∥A
,

y

∥y∥A
〉
A

∣∣∣∣2 + ∥∥∥∥T y

∥y∥A

∥∥∥∥4
A

=
√
| ⟨x, y⟩A |2 + ∥y∥4A∥x∥4A.

In particular, we obtain that

dω2
A(T ) ≥ | ⟨x, y⟩A |2 + ∥y∥4A∥x∥4A.

Since by hypothesis, dwA(T ) = ∥x∥2A∥y∥2A, then it follows that ∥x∥4A∥y∥4A =
dω2

A(T ) ≥ | ⟨x, y⟩A |2 + ∥x∥4A∥y∥4A. This clearly forces ⟨x, y⟩A = 0. Hence,
x ⊥A y.
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