On A-parallelism and A-Birkhoff-James orthogonality of operators

Tamara Bottazzi ${ }^{1 a, b}$, Cristian Conde ${ }^{2}{ }^{2, b}$ and Kais Feki ${ }^{3 a, b}$

Abstract

In this paper, we establish several characterizations of the A-parallelism of bounded linear operators with respect to the seminorm induced by a positive operator A acting on a complex Hilbert space. Among other things, we investigate the relationship between A -seminorm-parallelism and A-Birkhoff-James orthogonality of A-bounded operators. In particular, we characterize A-bounded operators which satisfy the A-Daugavet equation. In addition, we relate the A-BirkhoffJames orthogonality of operators and distance formulas and we give an explicit formula of the center mass for A-bounded operators. Some other related results are also discussed.

Mathematics Subject Classification (2010). 47B65, 47A12, 46C05, 47A05.
Keywords. Positive operator, numerical radius, orthogonality, parallelism.

1. Introduction and Preliminaries

Let $\mathbb{B}(\mathcal{H})$ denote the C^{*}-algebra of all bounded linear operators acting on a non trivial complex Hilbert space \mathcal{H} with an inner product $\langle\cdot, \cdot\rangle$ and the corresponding norm $\|\cdot\|$. The symbol $I_{\mathcal{H}}$ stands for the identity operator on \mathcal{H} (or I if no confusion arises). In all that follows, by an operator we mean a bounded linear operator. The range of every operator is denoted by $\mathcal{R}(T)$, its null space by $\mathcal{N}(T)$ and T^{*} is the adjoint of T. If $T, S \in \mathbb{B}(\mathcal{H})$, we write $T \geq S$ whenever $\langle T x, x\rangle \geq\langle S x, x\rangle$ for all $x \in \mathcal{H}$. An element $A \in \mathbb{B}(\mathcal{H})$ such that $A \geq 0$ is called positive. For every $A \geq 0$, there exists a unique positive $A^{1 / 2} \in \mathbb{B}(\mathcal{H})$ such that $A=\left(A^{1 / 2}\right)^{2}$. For the rest of this article, we assume that $A \in \mathbb{B}(\mathcal{H})$ is a positive nonzero operator, which clearly induces the following semi-inner product

$$
\langle\cdot, \cdot\rangle_{A}: \mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{C},(x, y) \longmapsto\langle x, y\rangle_{A}:=\langle A x, y\rangle .
$$

Notice that the induced seminorm is given by $\|x\|_{A}=\sqrt{\langle x, x\rangle_{A}}$, for every $x \in \mathcal{H}$. This makes \mathcal{H} into a semi-Hilbert space. One can check that $\|\cdot\|_{A}$ is a norm on \mathcal{H} if and only if A is injective, and that $\left(\mathcal{H},\|\cdot\|_{A}\right)$ is complete
if and only if $\mathcal{R}(A)$ is closed. The semi-inner product $\langle\cdot, \cdot\rangle_{A}$ induces an inner product on the quotient space $\mathcal{H} / \mathcal{N}(A)$ defined as

$$
[\bar{x}, \bar{y}]=\langle A x, y\rangle, \quad \forall \bar{x}, \bar{y} \in \mathcal{H} / \mathcal{N}(A)
$$

Notice that $(\mathcal{H} / \mathcal{N}(A),[\cdot, \cdot])$ is not complete unless $\mathcal{R}(A)$ is a closed subset of \mathcal{H}. However, a canonical construction due to L. de Branges and J. Rovnyak in [9] (see also [14]) shows that the completion of $\mathcal{H} / \mathcal{N}(A)$ under the inner product $[\cdot, \cdot]$ is isometrically isomorphic to the Hilbert space $\mathcal{R}\left(A^{1 / 2}\right)$ with the inner product

$$
\begin{equation*}
\left\langle A^{1 / 2} x, A^{1 / 2} y\right\rangle_{\mathbf{R}\left(A^{1 / 2}\right)}:=\left\langle P_{\overline{\mathcal{R}}(A)} x, P_{\overline{\mathcal{R}}(A)} y\right\rangle, \forall x, y \in \mathcal{H} \tag{1.1}
\end{equation*}
$$

where $P_{\overline{\mathcal{R}}(A)}$ denotes the orthogonal projection onto $\overline{\mathcal{R}(A)}$. For the sequel, the Hilbert space $\left(\mathcal{R}\left(A^{1 / 2}\right),\langle\cdot, \cdot\rangle_{\mathbf{R}\left(A^{1 / 2}\right)}\right)$ will be denoted by $\mathbf{R}\left(A^{1 / 2}\right)$. By using (1.1), one can check that

$$
\langle A x, A y\rangle_{\mathbf{R}\left(A^{1 / 2}\right)}=\langle x, y\rangle_{A}, \quad \forall x, y \in \mathcal{H}
$$

which, in turn, implies that

$$
\begin{equation*}
\|A x\|_{\mathbf{R}\left(A^{1 / 2}\right)}=\|x\|_{A}, \quad \forall x \in \mathcal{H} \tag{1.2}
\end{equation*}
$$

We refer the reader to [4] and the references therein for more information concerning the Hilbert space $\mathbf{R}\left(A^{1 / 2}\right)$.

For $T \in \mathbb{B}(\mathcal{H})$, an operator $S \in \mathbb{B}(\mathcal{H})$ is said an A-adjoint operator of T if the identity $\langle T x, y\rangle_{A}=\langle x, S y\rangle_{A}$ holds for every $x, y \in \mathcal{H}$, or equivalently, S is solution of the operator equation $A X=T^{*} A$. Notice that this kind of equation can be investigated by using the following well-known theorem due to Douglas (for its proof see [12]).

Theorem A. If $T, S \in \mathbb{B}(\mathcal{H})$, then the following statements are equivalent:
(i) $\mathcal{R}(S) \subseteq \mathcal{R}(T)$.
(ii) $T D=S$ for some $D \in \mathbb{B}(\mathcal{H})$.
(iii) There exists $\lambda>0$ such that $\left\|S^{*} x\right\| \leq \lambda\left\|T^{*} x\right\|$ for all $x \in \mathcal{H}$.

If one of these conditions holds, then there exists a unique solution of the operator equation $T X=S$, denoted by Q, such that $\mathcal{R}(Q) \subseteq \overline{\mathcal{R}\left(T^{*}\right)}$. Such Q is called the reduced solution of $T X=S$.

If we denote by $\mathbb{B}_{A}(\mathcal{H})$ and $\mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ the sets of all operators that admit A-adjoints and $A^{1 / 2}$-adjoints, respectively, then an application of Theorem A gives

$$
\mathbb{B}_{A}(\mathcal{H})=\left\{T \in \mathbb{B}(\mathcal{H}) ; \mathcal{R}\left(T^{*} A\right) \subseteq \mathcal{R}(A)\right\}
$$

and

$$
\mathbb{B}_{A^{1 / 2}}(\mathcal{H})=\left\{T \in \mathbb{B}(\mathcal{H}) ; \exists c>0 ;\|T x\|_{A} \leq c\|x\|_{A}, \forall x \in \mathcal{H}\right\}
$$

Operators in $\mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ are called A-bounded. Notice that $\mathbb{B}_{A}(\mathcal{H})$ and $\mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ are two subalgebras of $\mathbb{B}(\mathcal{H})$ which are, in general, neither closed nor dense in $\mathbb{B}(\mathcal{H})$ (see [2]). Moreover, the following inclusions $\mathbb{B}_{A}(\mathcal{H}) \subseteq \mathbb{B}_{A^{1 / 2}}(\mathcal{H}) \subseteq \mathbb{B}(\mathcal{H})$ hold and are in general proper (see [15]).

Let $T \in \mathbb{B}_{A}(\mathcal{H})$. The reduced solution of the equation $A X=T^{*} A$ will be denoted by $T^{\sharp A}$. Note that, $T^{\sharp_{A}}=A^{\dagger} T^{*} A$. Here A^{\dagger} is the MoorePenrose inverse of A. We mention that if $T \in \mathbb{B}_{A}(\mathcal{H})$, then $T^{\sharp A} \in \mathbb{B}_{A}(\mathcal{H})$ and $\left(T^{\sharp A}\right)^{\sharp A}=P_{\overline{\mathcal{R}(A)}} T P_{\overline{\mathcal{R}(A)}}$. For more results concerning $T^{\sharp A}$ see [2, 3]. It is useful to recall that an operator $T \in \mathbb{B}_{A}(\mathcal{H})$ is called A-normal if $T T^{\sharp A}=$ $T^{\sharp A} T$ (see [4, 8]). Notice that T is A-normal if and only if $\mathcal{R}\left(T T^{\sharp A}\right) \subseteq \overline{\mathcal{R}(A)}$ and $\left\|T^{\sharp} x\right\|_{A}=\|T x\|_{A}$ for all $x \in \mathcal{H}$ (see [23]). Now, it is well-known that $\langle\cdot, \cdot\rangle_{A}$ induces on $\mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ the following seminorm:

$$
\begin{equation*}
\|T\|_{A}:=\sup _{\substack{x \in \overline{\mathcal{R}}(A) \\ x \neq 0}} \frac{\|T x\|_{A}}{\|x\|_{A}}=\sup \left\{\|T x\|_{A} ; x \in \mathcal{H},\|x\|_{A}=1\right\}<\infty \tag{1.3}
\end{equation*}
$$

It can be observed that for $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H}),\|T\|_{A}=0$ if and only if $A T=0$. Notice that it was proved in [13] that for $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ we have

$$
\begin{equation*}
\|T\|_{A}=\sup \left\{\left|\langle T x, y\rangle_{A}\right| ; x, y \in \mathcal{H},\|x\|_{A}=\|y\|_{A}=1\right\} \tag{1.4}
\end{equation*}
$$

It can be verified that, for $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$, we have $\|T x\|_{A} \leq\|T\|_{A}\|x\|_{A}$ for all $x \in \mathcal{H}$. This implies that, for $T, S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$, we have $\|T S\|_{A} \leq\|T\|_{A}\|S\|_{A}$. In addition, we have $\left\|T^{\sharp A} T\right\|_{A}=\left\|T T^{\sharp A}\right\|_{A}=\|T\|_{A}^{2}=\left\|T^{\sharp A}\right\|_{A}^{2}$ for all $T \in$ $\mathbb{B}_{A}(\mathcal{H})$ (see [3, Proposition 2.3.]). Notice that it may happen that $\|T\|_{A}=$ $+\infty$ for some $T \in \mathbb{B}(\mathcal{H})$ (see [15]). For more details concerning A-bounded operators, see [4] and the references therein. Recently, A. Saddi generalized in [23] the concept of the numerical radius of Hilbert space operators and defined the A-numerical radius of an operator $T \in \mathbb{B}(\mathcal{H})$ by

$$
\omega_{A}(T)=\sup \left\{\left|\langle T x, x\rangle_{A}\right| ; x \in \mathcal{H},\|x\|_{A}=1\right\}=\sup \left\{|\lambda| ; \lambda \in W_{A}(T)\right\}
$$

where $W_{A}(T)$ denotes the A-numerical range of T which was firstly defined by Baklouti et al. in [7] as

$$
W_{A}(T)=\left\{\langle T x, x\rangle_{A} ; x \in \mathcal{H},\|x\|_{A}=1\right\}
$$

If $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ then $\omega_{A}(T)<+\infty$ and

$$
\frac{1}{2}\|T\|_{A} \leq \omega_{A}(T) \leq\|T\|_{A}
$$

Very recently, the A-Davis-Wielandt radius of an operator $T \in \mathbb{B}(\mathcal{H})$ is defined, as in [18], by

$$
d \omega_{A}(T)=\sup \left\{\sqrt{\left|\langle T x, x\rangle_{A}\right|^{2}+\|T x\|_{A}^{4}} ; x \in \mathcal{H},\|x\|_{A}=1\right\}
$$

Notice that it was shown in [18], that for $T \in \mathbb{B}(\mathcal{H}), d \omega_{A}(T)$ can be equal to $+\infty$. However, if $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$, then we have

$$
\max \left\{\omega_{A}(T),\|T\|_{A}^{2}\right\} \leq d \omega_{A}(T) \leq \sqrt{\omega_{A}(T)^{2}+\|T\|_{A}^{4}}<\infty
$$

Recently, the concept of the A-spectral radius of A-bounded operators has been introduced by the third author in [15] as follows:

$$
\begin{equation*}
r_{A}(T):=\inf _{n \geq 1}\left\|T^{n}\right\|_{A}^{\frac{1}{n}}=\lim _{n \rightarrow+\infty}\left\|T^{n}\right\|_{A}^{\frac{1}{n}} \tag{1.5}
\end{equation*}
$$

We note here that the second equality in (1.5) is also proved in [15, Theorem 1]. An operator $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ is said to be A-normaloid if $r_{A}(T)=\|T\|_{A}$. Moreover, T is called A-spectraloid if $r_{A}(T)=\omega_{A}(T)$. It was shown in [15] that for every A-normaloid operator $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ we have

$$
\begin{equation*}
r_{A}(T)=\omega_{A}(T)=\|T\|_{A} \tag{1.6}
\end{equation*}
$$

Obviously, (1.6) implies that every A-normaloid operator is A-spectraloid.
Throughout this paper, let \mathbb{T} denote the unit cycle of the complex plane, i.e. $\mathbb{T}=\{\lambda \in \mathbb{C} ;|\lambda|=1\}$. Recall from [18] that an operator $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ is said to be A-seminorm-parallel to an operator $S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$, in short $T \|_{A} S$, if there exists some $\lambda \in \mathbb{T}$ such that $\|T+\lambda S\|_{A}=\|T\|_{A}+\|S\|_{A}$. If $A=I$, then $\|_{I}$ will simply denoted by $\|$. Recall also from [27] that an element $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ is said to be A-Birkhoff-James orthogonal to another element $S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$, denoted by $T \perp_{A}^{B J} S$, if

$$
\|T+\gamma S\|_{A} \geq\|T\|_{A}, \quad \text { for all } \gamma \in \mathbb{C}
$$

Very recently, the A-Birkhoff-James orthogonality of A-bounded operators has been investigated by Sen et al. in [24]. We mention also here that several results covering some classes of Hilbert space operators were extended to A bounded operators (see, e.g., $[10,14,15,16,18,21,27]$ and the references therein).

The following lemma will be used in due course of time. Notice that the proof of the assertion (i) can be found in [4]. Further, for the proof of the assertions (ii) and (iii), we refer to [15]. In addition, the assertion (iv) has been proved in [21]. Finally, the proof of last assertion can be found in [18].

Lemma B. Let $T \in \mathbb{B}(\mathcal{H})$. Then $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ if and only if there exists a unique $\widetilde{T} \in \mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)$ such that $Z_{A} T=\widetilde{T} Z_{A}$. Here, $Z_{A}: \mathcal{H} \rightarrow \mathbf{R}\left(A^{1 / 2}\right)$ is defined by $Z_{A} x=A x$. Moreover, the following properties hold
(i) $\|T\|_{A}=\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}$.
(ii) $r_{A}(T)=r(\widetilde{T})$.
(iii) $\overline{W_{A}(T)}=W(\widetilde{T})$.
(iv) If $T \in \mathbb{B}_{A}(\mathcal{H})$, then $\widetilde{T^{\sharp_{A}}}=(\widetilde{T})^{*}$.
(v) If $T, S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$, then $T \|_{A} S$ if and only if $\widetilde{T} \| \widetilde{S}$.

The remainder of the paper is organized as follows. In Section 2, we present different characterizations of the notion of A-seminorm-parallelism. Some of the obtained results cover and extend the work of Zamani et al. [26]. In particular, we investigate when the A-Davis-Wielandt radius of an operator coincides with its upper bound. In section 3, we give another characterizations of A-seminorm-parallelism related to A-Birkhoff-James orthogonality. Finally, section 4 is devoted to obtain some formulas for the A-center of mass of A-bounded operators using well-known distance formulas.

2. A-seminorm-parallelism

Our starting point in the present section is the following examples of seminormparallelism in semi-Hilbert spaces.

Examples 2.1. (1) Let $T, S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ be linearly dependent operators. Then $T \|_{A} S$ (see [18, Example 3]).
(2) Let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ and $T=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ be operators acting on \mathbb{C}^{2}. Then for $\lambda=1$, simple computations show that

$$
\|T+\lambda I\|_{A}=\|T\|_{A}+\|I\|_{A}=2 .
$$

Hence $T \|_{A} I$.
(3) Let $\lambda>0$ and $A, T, S: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be such that

$$
S(\bar{x})=\left(\lambda x_{1}, \lambda x_{2}, x_{3}, x_{4}, \ldots\right), \quad T(\bar{x})=\left(0, \lambda x_{2}, x_{3}, x_{4}, \ldots\right)
$$

and

$$
A(\bar{x})=\left(0, x_{2}, 0,0, \ldots\right),
$$

for every $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \in \ell^{2}(\mathbb{N})$, where \mathbb{N} denotes the set of all positive integers. Clearly, $A \geq 0$. Further, it can be observed that $\|T\|_{A}=\|S\|_{A}=\lambda$. Now, let $\left\{e_{j}\right\}_{j \in \mathbb{N}}$ be the canonical orthogonal basis of $\mathcal{H}=\ell^{2}(\mathbb{N})$. Then, we have

$$
\left\|(T+S)\left(e_{2}\right)\right\|_{A}^{2}=4 \lambda^{2}
$$

Thus, $2 \lambda \leq\|T+S\|_{A} \leq\|T\|_{A}+\|S\|_{A}=2 \lambda$. Therefore $T \|_{A} S$.
In the following proposition, we state some basic properties of operator seminorm-parallelism in $\mathbb{B}_{A^{1 / 2}}(\mathcal{H})$.
Proposition 2.1. Let $T, S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$. The following statements are equivalent:
(1) $T \|_{A} S$.
(2) $\alpha T \|_{A} \alpha S$ for every $\alpha \in \mathbb{C} \backslash\{0\}$.
(3) $\beta T \|_{A} \gamma S$ for every $\beta, \gamma \in \mathbb{R} \backslash\{0\}$

Proof. Notice that equivalence $(1) \Leftrightarrow(2)$ follows immediately from the definition of A-operator parallelism.
$(1) \Rightarrow(3)$ Assume that $T \|_{A} S$. Thus $\|T+\lambda S\|_{A}=\|T\|_{A}+\|S\|_{A}$ for some $\lambda \in \mathbb{T}$. Let $\beta, \gamma \in \mathbb{R} \backslash\{0\}$. We suppose that $\beta \geq \gamma>0$. Hence, we see that

$$
\begin{aligned}
\|\beta T\|_{A}+\|\gamma S\|_{A} & \geq\|\beta T+\lambda(\gamma S)\|_{A} \\
& =\|\beta(T+\lambda S)-(\beta-\gamma)(\lambda S)\|_{A} \\
& \geq\|\beta(T+\lambda S)\|_{A}-\|(\beta-\gamma) \lambda S\|_{A} \\
& =\beta\|T+\lambda S\|_{A}-(\beta-\gamma)\|S\|_{A} \\
& =\beta\left(\|T\|_{A}+\|S\|_{A}\right)-(\beta-\gamma)\|S\|_{A} \\
& =\|\beta T\|_{A}+\|\gamma S\|_{A} .
\end{aligned}
$$

So, $\|\beta T+\lambda(\gamma S)\|_{A}=\|\beta T\|_{A}+\|\gamma S\|_{A}$ for some $\lambda \in \mathbb{T}$. Thus, $\beta T \|_{A} \gamma S$. $(3) \Rightarrow(1)$ is trivial.

The following lemma is useful in the sequel.
Lemma 2.1. Let $T, S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$. Then the following statements are equivalent:
(i) $T \|_{A} S$.
(ii) There exist a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} (i.e. $\left\|x_{n}\right\|_{A}=1$ for all n) and $\lambda \in \mathbb{T}$ such that

$$
\lim _{n \rightarrow+\infty}\left\langle T x_{n}, S x_{n}\right\rangle_{A}=\lambda\|T\|_{A}\|S\|_{A}
$$

In order to prove Lemma 2.1, we need the following result.
Theorem C. ([18]) Let $T, S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$. Then, $T \|_{A} S$ if and only if there exists a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left|\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right|=\|T\|_{A}\|S\|_{A} \tag{2.1}
\end{equation*}
$$

Remark 2.1. In addition, if $\|T\|_{A}\|S\|_{A} \neq 0$ and $\left\{x_{n}\right\}$ is a sequence of A-unit vectors in \mathcal{H} satisfying (2.1), then it also satisfies

$$
\lim _{n \rightarrow+\infty}\left\|T x_{n}\right\|_{A}=\|T\|_{A} \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left\|S x_{n}\right\|_{A}=\|S\|_{A}
$$

Indeed, for any $\varepsilon>0$ and n large enough we have

$$
\|T\|_{A}\|S\|_{A} \geq\|S\|_{A}\left\|T x_{n}\right\|_{A} \geq\left|\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right| \geq\|S\|_{A}\|T\|_{A}-\varepsilon
$$

Hence, $\lim _{n \rightarrow+\infty}\left\|T x_{n}\right\|_{A}=\|T\|_{A}$. Analogously, by changing the roles between T and S, we obtain $\lim _{n \rightarrow+\infty}\left\|S x_{n}\right\|_{A}=\|S\|_{A}$.

Now, we state the proof of Lemma 2.1.
Proof of Lemma 2.1. Assume that $T \|_{A} S$, then by Theorem C there exists a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left|\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right|=\|T\|_{A}\|S\|_{A} \tag{2.2}
\end{equation*}
$$

Suppose that $\|T\|_{A}\|S\|_{A} \neq 0$ (otherwise the desired assertion holds trivially). Since \mathbb{T} is a compact subset of \mathbb{C}, then by taking a further subsequence we may assume that there is some $\lambda \in \mathbb{T}$ such that

$$
\lim _{n \rightarrow+\infty} \frac{\left\langle T x_{n}, S x_{n}\right\rangle_{A}}{\left|\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right|}=\lambda
$$

So, by using (2.2) we get

$$
\lim _{n \rightarrow+\infty}\left\langle T x_{n}, S x_{n}\right\rangle_{A}=\lim _{n \rightarrow+\infty} \frac{\left\langle T x_{n}, S x_{n}\right\rangle_{A}}{\left|\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right|}\left|\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right|=\lambda\|T\|_{A}\|S\|_{A}
$$

The converse implication follows immediately by applying Theorem C.
Our next goal is to characterize the A-seminorm-parallelism of operators in $\mathbb{B}_{A}(\mathcal{H})$. To achieve this goal, we shall need some lemmas. In what follows $\sigma(T), \sigma_{a}(T), r(T)$ and $W(T)$ stand for the spectrum, the approximate spectrum, the spectral radius and the numerical range of an arbitrary element $T \in \mathbb{B}(\mathcal{H})$, respectively.

Lemma 2.2. ([20, Theorem 1.2-1]) Let $T \in \mathbb{B}(\mathcal{H})$. Then, $\sigma(T) \subseteq \overline{W(T)}$.
Lemma 2.3. ([22, Theorem 3.3.6]) Let $T \in \mathbb{B}(\mathcal{H})$ be a normal operator. Then there exists a state $\psi($ i.e. a functional $\psi: \mathbb{B}(\mathcal{H}) \rightarrow \mathbb{C}$ with $\|\psi\|=1$ and $\psi\left(T^{*} T\right) \geq 0$ for all $\left.T \in \mathbb{B}(\mathcal{H})\right)$ such that $\psi(T)=\|T\|$.

Now, we are in a position to prove the following result.
Theorem 2.1. Let $T, S \in \mathbb{B}_{A}(\mathcal{H})$. Then the following statements are equivalent:
(1) $T \|_{A} S$.
(2) $r_{A}\left(S^{\sharp_{A}} T\right)=\left\|S^{\sharp} A T\right\|_{A}=\left\|T^{\sharp_{A}} S\right\|_{A}=\|T\|_{A}\|S\|_{A}$.
(3) $T^{\sharp A} T \|_{A} T^{\sharp A} S$ and $\left\|T^{\sharp A} S\right\|_{A}=\|T\|_{A}\|S\|_{A}$.
(4) $\left\|T^{\sharp A}(T+\lambda S)\right\|_{A}=\|T\|_{A}\left(\|T\|_{A}+\|S\|_{A}\right)$ for some $\lambda \in \mathbb{T}$.

Proof. (1) $\Rightarrow(2)$ Assume that $T \|_{A} S$. If $A T=0$ or $A S=0$, then by using (1.4) we can verify that the assertion (2) holds. Suppose that $A T \neq 0$ and $A S \neq 0$, i.e. $\|T\|_{A} \neq 0$ and $\|S\|_{A} \neq 0$. Since $T \|_{A} S$, then by Lemma 2.1, there exists a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} satisfying

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\langle T x_{n}, S x_{n}\right\rangle_{A}=\lambda\|T\|_{A}\|S\|_{A} \tag{2.3}
\end{equation*}
$$

for some $\lambda \in \mathbb{T}$. This implies that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \Re\left(\left\langle T x_{n}, \lambda S x_{n}\right\rangle_{A}\right)=\|T\|_{A}\|S\|_{A} \tag{2.4}
\end{equation*}
$$

where $\Re(z)$ denotes the real part of $z \in \mathbb{C}$. Moreover, by using the CauchySchwarz inequality it follows from

$$
\|T\|_{A}\|S\|_{A}=\lim _{n \rightarrow+\infty}\left|\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right| \leq \lim _{n \rightarrow+\infty}\left\|T x_{n}\right\|_{A}\|S\|_{A} \leq\|T\|_{A}\|S\|_{A}
$$

This immediately implies that $\lim _{n \rightarrow+\infty}\left\|T x_{n}\right\|_{A}=\|T\|_{A}$. In addition, by similar arguments as above, we obtain $\lim _{n \rightarrow+\infty}\left\|S x_{n}\right\|_{A}=\|S\|_{A}$. So, by taking into consideration (2.4), we see that

$$
\begin{aligned}
\|T\|_{A}+\|S\|_{A} & \geq\|T+\lambda S\|_{A} \\
& \geq\left(\lim _{n \rightarrow+\infty}\left\|(T+\lambda S) x_{n}\right\|_{A}^{2}\right)^{\frac{1}{2}} \\
& \geq\left(\lim _{n \rightarrow+\infty}\left[\left\|T x_{n}\right\|_{A}^{2}+2 \Re\left(\left\langle T x_{n}, \lambda S x_{n}\right\rangle_{A}\right)+\left\|S x_{n}\right\|_{A}^{2}\right]\right)^{\frac{1}{2}} \\
& =\left(\|T\|_{A}^{2}+2\|S\|_{A}\|T\|_{A}+\|S\|_{A}^{2}\right)^{\frac{1}{2}}=\|T\|_{A}+\|S\|_{A}
\end{aligned}
$$

Thus, we infer that $\|T+\lambda S\|_{A}=\|T\|_{A}+\|S\|_{A}$. Hence, it can be observed that

$$
\begin{aligned}
\left(\|T\|_{A}+\|S\|_{A}\right)^{2} & =\|T+\lambda S\|_{A}^{2} \\
& =\left\|(T+\lambda S)^{\sharp A}(T+\lambda S)\right\|_{A} \\
& \leq\left\|T^{\sharp A} T\right\|_{A}+\left\|\lambda T^{\not{ }_{A}} S\right\|_{A}+\left\|\bar{\lambda} S^{\sharp A} T\right\|_{A}+\left\|S^{\sharp A} S\right\|_{A} \\
& \leq\|T\|_{A}^{2}+2\|T\|_{A}\|S\|_{A}+\|S\|_{A}^{2} \\
& =\left(\|T\|_{A}+\|S\|_{A}\right)^{2} .
\end{aligned}
$$

This implies that $\left\|T^{\sharp_{A}} S\right\|_{A}+\left\|S^{\sharp_{A}} T\right\|_{A}=2\|T\|\|S\|$. On the other hand, one observes that $P_{\overline{\mathcal{R}}(A)} A=A P_{\overline{\mathcal{R}}(A)}=A$. Moreover, by (1.4), we see that

$$
\begin{aligned}
\left\|T^{\sharp A} S\right\|_{A} & =\left\|S^{\sharp A} P_{\overline{\mathcal{R}(A)}} T P_{\overline{\mathcal{R}(A)}}\right\|_{A} \\
& =\sup \left\{\left|\left\langle A P_{\overline{\mathcal{R}(A)}} x,\left(S^{\sharp A} P_{\overline{\mathcal{R}(A)}} T\right)^{\sharp A} y\right\rangle\right| ; x, y \in \mathcal{H},\|x\|_{A}=\|y\|_{A}=1\right\} \\
& =\sup \left\{\left|\left\langle S^{\sharp A} P_{\overline{\mathcal{R}(A)}} T x, y\right\rangle_{A}\right| ; x, y \in \mathcal{H},\|x\|_{A}=\|y\|_{A}=1\right\} \\
& =\sup \left\{\left|\left\langle A P_{\overline{\mathcal{R}(A)}} T x, S y\right\rangle\right| ; x, y \in \mathcal{H},\|x\|_{A}=\|y\|_{A}=1\right\} \\
& =\sup \left\{\left|\left\langle S^{\sharp A} T x, y\right\rangle_{A}\right| ; x, y \in \mathcal{H},\|x\|_{A}=\|y\|_{A}=1\right\} \\
& =\left\|S^{\sharp A} T\right\|_{A} .
\end{aligned}
$$

Hence, we deduce that

$$
\begin{equation*}
\left\|S^{\sharp} A\right\|_{A}=\left\|T^{\sharp A} S\right\|_{A}=\|T\|_{A}\|S\|_{A} . \tag{2.5}
\end{equation*}
$$

Moreover, by using the Cauchy-Shwarz inequality, we see that

$$
\begin{aligned}
\|T\|_{A}\|S\|_{A} & =\lim _{n \rightarrow+\infty}\left|\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right| \\
& \leq \lim _{n \rightarrow+\infty}\left\|S^{\sharp A} T x_{n}\right\|_{A} \\
& \leq\left\|S^{\sharp} T\right\|_{A}=\|T\|_{A}\|S\|_{A},
\end{aligned}
$$

where the last equality follows from (2.5). So, we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|S^{\not{ }_{A}} T x_{n}\right\|_{A}=\|T\|_{A}\|S\|_{A} . \tag{2.6}
\end{equation*}
$$

On the other hand, it can be observed that

$$
\begin{aligned}
\left\|\left(S^{\sharp A} T-\lambda\|T\|_{A}\|S\|_{A} I\right) x_{n}\right\|_{A}^{2} & =\left\|S^{\sharp A} T x_{n}\right\|_{A}^{2}+\|T\|_{A}^{2}\|S\|_{A}^{2} \\
& -2\|T\|_{A}\|S\|_{A} \Re\left(\bar{\lambda}\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right) .
\end{aligned}
$$

So, by using (2.3) together with (2.6) we get

$$
\lim _{n \rightarrow+\infty}\left\|\left(S^{\sharp A} T-\lambda\|T\|_{A}\|S\|_{A} I\right) x_{n}\right\|_{A}=0 .
$$

This implies, thought (1.2), that

$$
\lim _{n \rightarrow+\infty}\left\|A\left(S^{\sharp} T-\lambda\|T\|_{A}\|S\|_{A} I\right) x_{n}\right\|_{\mathbf{R}\left(A^{1 / 2}\right)}=0,
$$

So, by using Lemma B we get

$$
\lim _{n \rightarrow+\infty}\left\|\left((\widetilde{S})^{*} \widetilde{T}-\lambda\|T\|_{A}\|S\|_{A} I_{\mathbf{R}\left(A^{1 / 2}\right)}\right) A x_{n}\right\|_{\mathbf{R}\left(A^{1 / 2}\right)}=0
$$

Since $\left\|A x_{n}\right\|_{\mathbf{R}\left(A^{1 / 2}\right)}=\left\|x_{n}\right\|_{A}=1$. Then, $\lambda\|T\|_{A}\|S\|_{A} \in \sigma_{a}\left((\widetilde{S})^{*} \widetilde{T}\right)$. So,

$$
\|T\|_{A}\|S\|_{A} \leq r\left((\widetilde{S})^{*} \widetilde{T}\right)=r\left(\widetilde{S^{\sharp} A} T\right)=r_{A}\left(S^{\sharp_{A}} T\right),
$$

where the last equality follows from Lemma B. Further, clearly $r_{A}\left(S^{\sharp_{A}} T\right) \leq$ $\|T\|_{A}\|S\|_{A}$. This proves, through (2.5), that

$$
r_{A}\left(S^{\sharp A} T\right)=\|T\|_{A}\|S\|_{A}=\left\|S^{\sharp A} T\right\|_{A}=\left\|T^{\sharp_{A}} S\right\|_{A},
$$

as required.
$(2) \Rightarrow(1)$ Assume that (2) holds. Then, by applying Lemma B we can see that

$$
r\left((\widetilde{S})^{*} \widetilde{T}\right)=\|T\|_{A}\|S\|_{A}
$$

Hence, there exists $\lambda_{0} \in \sigma\left((\widetilde{S})^{*} \widetilde{T}\right)$ such that $\left|\lambda_{0}\right|=\|T\|_{A}\|S\|_{A}$. So, by Lemma 2.2 together with Lemma B, we have

$$
\lambda_{0} \in \overline{W\left((\widetilde{S})^{*} \widetilde{T}\right)}=\overline{W_{A}\left(S^{\sharp} A\right)} .
$$

Thus there exists a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} satisfying

$$
\lim _{n \rightarrow+\infty}\left\langle T x_{n}, S x_{n}\right\rangle_{A}=\lambda_{0} .
$$

This immediately proves the desired result by applying Theorem C. $(1) \Rightarrow(3)$ Assume that $T \|_{A} S$. Then, by Lemma 2.1 there exist a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} and $\lambda \in \mathbb{T}$ such that

$$
\lim _{n \rightarrow+\infty}\left\langle T x_{n}, S x_{n}\right\rangle_{A}=\lambda\|T\|_{A}\|S\|_{A} .
$$

So by proceeding as in the implication $(1) \Rightarrow(2)$, we obtain $\|T+\lambda S\|_{A}=$ $\|T\|_{A}+\|S\|_{A}$ and $\left\|T^{\sharp A} S\right\|_{A}=\|T\|_{A}\|S\|_{A}$. This implies, by Lemma B, that

$$
\begin{equation*}
\|\widetilde{T}+\lambda \widetilde{S}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}=\|\widetilde{T}\|_{\mathbf{R}\left(A^{1 / 2}\right)}+\|\widetilde{S}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)} \tag{2.7}
\end{equation*}
$$

and

$$
\left\|(\widetilde{T})^{*} \widetilde{S}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}=\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}\|\widetilde{S}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}
$$

Since $(\widetilde{T}+\lambda \widetilde{S})^{*}(\widetilde{T}+\lambda \widetilde{S})$ is a normal operator on the Hilbert space $\mathbf{R}\left(A^{1 / 2}\right)$, then by using Lemma 2.3, we deduce that there exists a state ψ such that

$$
\begin{aligned}
\psi\left((\widetilde{T}+\lambda \widetilde{S})^{*}(\widetilde{T}+\lambda \widetilde{S})\right) & =\left\|(\widetilde{T}+\lambda \widetilde{S})^{*}(\widetilde{T}+\lambda \widetilde{S})\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)} \\
& =\|\widetilde{T}+\lambda \widetilde{S}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}^{2} \\
& =\left(\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\|\widetilde{S}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}\right)^{2}
\end{aligned}
$$

where the last equality follows from (2.7). Thus

$$
\begin{aligned}
& \left(\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\|\widetilde{S}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}\right)^{2} \\
& =\psi\left((\widetilde{T})^{*} \widetilde{T}+\lambda(\widetilde{T})^{*} \widetilde{S}+\bar{\lambda}(\widetilde{S})^{*} \widetilde{T}+(\widetilde{S})^{*} \widetilde{S}\right) \\
& \leq\left\|(\widetilde{T})^{*} \widetilde{T}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\left\|\lambda(\widetilde{T})^{*} \widetilde{S}+\bar{\lambda}(\widetilde{S})^{*} \widetilde{T}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\left\|(\widetilde{S})^{*} \widetilde{S}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)} \\
& \leq\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}^{2}+2\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}\|\widetilde{S}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\|\widetilde{S}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}^{2} \\
& =\left(\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\|\widetilde{S}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}\right)^{2} .
\end{aligned}
$$

So $\psi\left((\widetilde{T})^{*} \widetilde{T}\right)=\left\|(\widetilde{T})^{*} \widetilde{T}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}$ and $\psi\left(\lambda(\widetilde{T})^{*} \widetilde{S}\right)=\left\|(\widetilde{T})^{*} \widetilde{S}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}$. Therefore, we have

$$
\begin{aligned}
& \left\|(\widetilde{T})^{*} \widetilde{T}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\left\|(\widetilde{T})^{*} \widetilde{S}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)} \\
& =\psi\left((\widetilde{T})^{*} \widetilde{T}+\lambda(\widetilde{T})^{*} \widetilde{S}\right) \\
& \leq\left\|(\widetilde{T})^{*} \widetilde{T}+\lambda(\widetilde{T})^{*} \widetilde{S}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)} \\
& \leq\left\|(\widetilde{T})^{*} \widetilde{T}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\left\|(\widetilde{T})^{*} \widetilde{S}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}
\end{aligned}
$$

Hence, we deduce that

$$
\left\|(\widetilde{T})^{*} \widetilde{T}+\lambda(\widetilde{T})^{*} \widetilde{S}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}=\left\|(\widetilde{T})^{*} \widetilde{T}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\left\|(\widetilde{T})^{*} \widetilde{S}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}
$$

for some $\lambda \in \mathbb{T}$. Thus $(\widetilde{T})^{*} \widetilde{T} \|(\widetilde{T})^{*} \widetilde{S}$ which implies that $\widetilde{T^{\sharp} A} T \| \widetilde{T^{\sharp} A S}$. So, by Lemma $\mathrm{B}(\mathrm{v}), T^{\sharp_{A}} T \|_{A} T^{\sharp_{A}} S$.
$(3) \Rightarrow(4)$ Follows obviously.
(4) \Rightarrow (1) Assume that $\left\|T^{\sharp A}(T+\lambda S)\right\|_{A}=\|T\|_{A}\left(\|T\|_{A}+\|S\|_{A}\right)$ for some $\lambda \in \mathbb{T}$.

Then we see that

$$
\begin{aligned}
\|T\|_{A}\left(\|T\|_{A}+\|S\|_{A}\right) & \geq\left\|T^{\sharp A}\right\|_{A}\|T+\lambda S\|_{A} \\
& \geq\left\|T^{\sharp A}(T+\lambda S)\right\|_{A} \\
& =\|T\|_{A}\left(\|T\|_{A}+\|S\|_{A}\right) .
\end{aligned}
$$

So, if $A T \neq 0$, then $\|T+\lambda S\|_{A}=\|T\|_{A}+\|S\|_{A}$ which yields that $T \|_{A} S$. Furthermore, if $A T=0$, then by taking (1.4) into account, we prove that $T \|_{A} S$.

Corollary 2.1. Let $T, S \in \mathbb{B}_{A}(\mathcal{H})$. The following conditions are equivalent:
(1) $T \|_{A} S$.
(2) $\omega_{A}\left(S^{\sharp_{A}} T\right)=\left\|S^{\sharp_{A}} T\right\|_{A}=\left\|T^{\sharp_{A}} S\right\|_{A}=\|T\|_{A}\|S\|_{A}$.

To prove Corollary 2.1, we need the following Lemma.
Lemma D. Let $T \in \mathbb{B}_{A}(\mathcal{H})$. Then T is A-normaloid if and only if $\omega_{A}(T)=$ $\|T\|_{A}$.

Now, we state the proof of Corollary 2.1.

Proof of Corollary 2.1. (1) $\Rightarrow(2)$ Assume that $T \|_{A} S$. Then, by Theorem 2.1 we have $r_{A}\left(S^{\sharp_{A}} T\right)=\left\|S^{\#_{A}} T\right\|_{A}=\left\|T^{\sharp_{A}} S\right\|_{A}=\|T\|_{A}\|S\|_{A}$. In particular, $S^{\sharp_{A}} T$ is A-normaloid. So, by Lemma D, $\omega_{A}\left(S^{\sharp_{A}} T\right)=\left\|S^{\sharp_{A}} T\right\|_{A}$.
$(2) \Rightarrow(1)$ Assume that $\omega_{A}\left(S^{\sharp_{A}} T\right)=\left\|S^{\sharp_{A}} T\right\|_{A}=\left\|T^{\sharp_{A}} S\right\|_{A}=\|T\|_{A}\|S\|_{A}$. In particular, by Lemma D, we conclude that $S^{\sharp A} T$ is A-normaloid. So, by [15, Proposition 4] there exists a sequence of A-unit vectors $\left\{x_{n}\right\}$ such that

$$
\lim _{n \rightarrow+\infty}\left\|S^{\sharp A} T x_{n}\right\|_{A}=\left\|S^{\sharp A} T\right\|_{A} \text { and } \lim _{n \rightarrow+\infty}\left|\left\langle S^{\sharp A} T x_{n}, x_{n}\right\rangle_{A}\right|=\omega_{A}\left(S^{\sharp A} T\right) .
$$

This implies that

$$
\lim _{n \rightarrow+\infty}\left|\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right|=\|T\|_{A}\|S\|_{A} .
$$

Thus, by Theorem C, we conclude that $T \|_{A} S$.

Next, we investigate the case when an operator $T \in \mathbb{B}_{A}(\mathcal{H})$ is A-parallel to the identity operator.

Theorem 2.2. Let $T \in \mathbb{B}_{A}(\mathcal{H})$. Then the following statements are equivalent:
(1) $T \|_{A} I$.
(2) $T \|_{A} T^{\sharp A}$.
(3) $T^{\sharp A} T \|_{A} T^{\sharp A}$.

Proof. (1) $\Leftrightarrow(2)$ Assume that $T \|_{A} I$. Then, by Lemma B $(v), \widetilde{T} \| I_{\mathbf{R}\left(A^{1 / 2}\right)}$. So, $\left\|\widetilde{T}+\lambda I_{\mathbf{R}\left(A^{1 / 2}\right)}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}=\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+1$, for some $\lambda \in \mathbb{T}$. Then by Lemma 2.3 there exists a state ψ such that such that

$$
\begin{aligned}
& \psi\left(\left(\widetilde{T}+\lambda I_{\mathbf{R}\left(A^{1 / 2}\right)}\right)^{*}\left(\widetilde{T}+\lambda I_{\mathbf{R}\left(A^{1 / 2}\right)}\right)\right) \\
& =\left\|\left(\widetilde{T}+\lambda I_{\mathbf{R}\left(A^{1 / 2}\right)}\right)^{*}\left(\widetilde{T}+\lambda I_{\mathbf{R}\left(A^{1 / 2}\right)}\right)\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)} \\
& =\left\|\widetilde{T}+\lambda I_{\mathbf{R}\left(A^{1 / 2}\right)}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}^{2} \\
& =\left(\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+1\right)^{2} .
\end{aligned}
$$

So, we see that

$$
\begin{aligned}
& \left(\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+1\right)^{2} \\
& =\psi\left(\left(\widetilde{T}+\lambda I_{\mathbf{R}\left(A^{1 / 2}\right)}\right)\left(\widetilde{T}+\lambda I_{\mathbf{R}\left(A^{1 / 2}\right)}\right)^{*}\right) \\
& =\psi\left(\widetilde{T}(\widetilde{T})^{*}\right)+\psi(\bar{\lambda} \widetilde{T})+\psi\left(\lambda(\widetilde{T})^{*}\right)+1 \\
& \leq\left\|\widetilde{T}(\widetilde{T})^{*}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\|\widetilde{\lambda} \widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\left\|\lambda(\widetilde{T})^{*}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+1 \\
& =\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}^{2}+2\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+1=\left(\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+1\right)^{2}
\end{aligned}
$$

Therefore $\psi(\bar{\lambda} \widetilde{T})=\psi\left(\lambda(\widetilde{T})^{*}\right)=\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}$. This yields that

$$
\begin{aligned}
\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\left\|(\widetilde{T})^{*}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)} & =\psi\left(\bar{\lambda} \widetilde{T}+\lambda(\widetilde{T})^{*}\right) \\
& \leq\left\|\bar{\lambda} \widetilde{T}+\lambda(\widetilde{T})^{*}\right\| \\
& =\left\|\widetilde{T}+\lambda^{2}(\widetilde{T})^{*}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)} \\
& \leq\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\left\|(\widetilde{T})^{*}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)} .
\end{aligned}
$$

Hence,

$$
\left\|\widetilde{T}+\lambda^{2}(\widetilde{T})^{*}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}=\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+\left\|(\widetilde{T})^{*}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}
$$

in which $\lambda^{2} \in \mathbb{T}$. So $\widetilde{T} \|(\widetilde{T})^{*}$. This implies, by Lemma B, that $\widetilde{T} \| \widetilde{T^{\sharp} A}$ which, in turn, yields that $T \|_{A} T^{\sharp_{A}}$.

Conversely, assume that $T \|_{A} T^{\sharp A}$ this implies, by Lemma B, that $\widetilde{T} \|(\widetilde{T})^{*}$ which, in turn, yields that

$$
\left\|\widetilde{T}+\lambda(\widetilde{T})^{*}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}=2\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}
$$

for some $\lambda \in \mathbb{T}$. Since $\widetilde{T}+\lambda(\widetilde{T})^{*}$ is a normal operator on the Hilbert space $\mathbf{R}\left(A^{1 / 2}\right)$, then by Lemma 2.3 , there exists a state ψ such that

$$
\left|\psi\left(\widetilde{T}+\lambda(\widetilde{T})^{*}\right)\right|=\left\|\widetilde{T}+\lambda(\widetilde{T})^{*}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}=2\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}
$$

Hence, we obtain

$$
2\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}=\left|\psi\left(\widetilde{T}+\lambda(\widetilde{T})^{*}\right)\right| \leq 2|\psi(\widetilde{T})| \leq 2\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}
$$

This implies that $|\psi(\widetilde{T})|=\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}$. So, there exists a number $\delta \in \mathbb{T}$ such that $\psi(\widetilde{T})=\delta\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}$. Thus, we deduce that

$$
\begin{aligned}
\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+1 & =\psi\left(\bar{\delta} \widetilde{T}+I_{\mathbf{R}\left(A^{1 / 2}\right)}\right) \\
& \leq\left\|\bar{\delta} \widetilde{T}+I_{\mathbf{R}\left(A^{1 / 2}\right)}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)} \\
& =\left\|\widetilde{T}+\delta I_{\mathbf{R}\left(A^{1 / 2}\right)}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)} \leq\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+1 .
\end{aligned}
$$

So $\left\|\widetilde{T}+\delta I_{\mathbf{R}\left(A^{1 / 2}\right)}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}=\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}+1$. This immediately implies that $\widetilde{T} \| I_{\mathbf{R}\left(A^{1 / 2}\right)}$. Hence, $T \|_{A} I$ as required.
$(1) \Leftrightarrow(3)$ Follows from Theorem 2.1.

In the next two theorems, we give some characterizations when the A-Davis Wielandt radius of semi-Hilbert space operators attains its upper bound for operators in $\mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ and $\mathbb{B}_{A}(\mathcal{H})$, respectively.
Theorem 2.3. Let $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$. Then, the following assertions are equivalent:
(1) $d \omega_{A}(T)=\sqrt{\omega_{A}(T)^{2}+\|T\|_{A}^{4}}$.
(2) $T \|_{A} I$.
(3) T is A-normaloid.
(4) $\omega_{A}^{2}(T) A \geq T^{*} A T$.

Proof. The equivalences $(1) \Leftrightarrow(2)$ and $(2) \Leftrightarrow(3)$ have been proved in [18]. $(3) \Leftrightarrow(4)$: By Lemma D, T is A-normaloid if and only if $\omega_{A}(T)=\|T\|_{A}$. On the other hand, it be observed that

$$
\begin{aligned}
\omega_{A}(T)=\|T\|_{A} & \Leftrightarrow\|T x\|_{A} \leq \omega_{A}(T)\|x\|_{A}, \forall x \in \mathcal{H} \\
& \Leftrightarrow\|T x\|_{A}^{2} \leq \omega_{A}(T)^{2}\|x\|_{A}^{2}, \forall x \in \mathcal{H} \\
& \Leftrightarrow\left\langle T^{*} A T x, x\right\rangle_{A} \leq\left\langle\omega_{A}(T)^{2} x, x\right\rangle_{A}, \forall x \in \mathcal{H} \\
& \Leftrightarrow\left\langle\left(T^{*} A T-\omega_{A}(T)^{2} A\right) x, x\right\rangle \leq 0, \forall x \in \mathcal{H} \\
& \Leftrightarrow \omega_{A}^{2}(T) A \geq T^{*} A T .
\end{aligned}
$$

This achieves the proof.
Theorem 2.4. Let $T \in \mathbb{B}_{A}(\mathcal{H})$. The following statements are equivalent:
(1) $d \omega_{A}(T)=\sqrt{\omega_{A}^{2}(T)+\|T\|_{A}^{4}}$.
(2) There exists a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} such that

$$
\lim _{n \rightarrow+\infty}\left|\left\langle T^{2} x_{n}, x_{n}\right\rangle_{A}\right|=\|T\|_{A}^{2}
$$

(3) There exists a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} such that

$$
\lim _{n \rightarrow+\infty}\left|\left\langle T T^{\sharp_{A}} T x_{n}, x_{n}\right\rangle_{A}\right|=\|T\|_{A}^{3} .
$$

(4) $\omega_{A}\left(T^{2}\right)=\|T\|_{A}^{2}$.

Proof. (1) $\Leftrightarrow(2):$ By Theorem 2.3, we have $d \omega_{A}(T)=\sqrt{\omega_{A}^{2}(T)+\|T\|_{A}^{4}}$ if and only if $T \|_{A} I$ which in turn equivalent, by Theorem 2.2 , to $T \|_{A} T^{\sharp_{A}}$. On the other hand, in view of Theorem C, we have $T \|_{A} T^{\sharp A}$ if and only if there exists a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} such that

$$
\lim _{n \rightarrow+\infty}\left|\left\langle T x_{n}, T^{\sharp A} x_{n}\right\rangle_{A}\right|=\|T\|_{A}\left\|T^{\sharp A}\right\|_{A} .
$$

So, we reach the equivalence (1) $\Leftrightarrow(2)$ since $\|T\|_{A}=\left\|T^{\sharp A}\right\|_{A}$.
$(1) \Leftrightarrow(3)$: By proceeding as above and taking into consideration Theorem 2.2, we deduce that $d \omega_{A}(T)=\sqrt{\omega_{A}^{2}(T)+\|T\|_{A}^{4}}$ if and only if $T^{\sharp_{A}} T \|_{A} T^{\sharp_{A}}$ which is in turn equivalent, by Theorem 2.2, to the existence of a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} such that

$$
\lim _{n \rightarrow+\infty}\left|\left\langle T^{\sharp A} T x_{n}, T^{\sharp A} x_{n}\right\rangle_{A}\right|=\left\|T^{\sharp A} T\right\|_{A}\left\|T^{\sharp A}\right\|_{A} .
$$

So, the desired equivalence follows since $\left\|T^{\sharp A}\right\|_{A}=\|T\|_{A}=\sqrt{\| T^{\sharp} A} T \|_{A}$ and

$$
\left|\left\langle T^{\sharp_{A}} T x_{n}, T^{\sharp_{A}} x_{n}\right\rangle_{A}\right|=\left|\left\langle T T^{\sharp_{A}} T x_{n}, x_{n}\right\rangle_{A}\right| .
$$

(1) \Leftrightarrow (4): If $d \omega_{A}(T)=\sqrt{\omega_{A}^{2}(T)+\|T\|_{A}^{4}}$, then by Theorem 2.3 T is A-normaloid. This implies that T is A-spectraloid. So, by [15, Theorem 6] $\omega_{A}\left(T^{2}\right)=\omega_{A}^{2}(T)$. Conversely, assume that $\omega_{A}\left(T^{2}\right)=\|T\|_{A}^{2}$. This implies that the assertion (2) holds and so (1) holds.

For $x, y \in \mathcal{H}$, we recall from [6] that the A-rank one operators is given by

$$
x \otimes_{A} y: \mathcal{H} \rightarrow \mathcal{H}, z \mapsto\left(x \otimes_{A} y\right)(z):=\langle z, y\rangle_{A} x
$$

A characterization of the A-parallelism of $x \otimes_{A} y$ and the identity operator is stated as follows.

Theorem 2.5. Let $x, y \in \mathcal{H}$, the following conditions are equivalent:
(1) $x \otimes_{A} y \|_{A} I$.
(2) $d \omega_{A}\left(x \otimes_{A} y\right)=\sqrt{\omega_{A}^{2}\left(x \otimes_{A} y\right)+\left\|x \otimes_{A} y\right\|_{A}^{4}}$.
(3) The vectors $A^{1 / 2} x$ and $A^{1 / 2} y$ are linearly dependent.
(4) The vectors $A x$ and $A y$ are linearly dependent.

To prove Theorem 2.5 we need the following lemma.
Lemma E. ([6]) Let $x, y \in \mathcal{H}$. Then, the following statement hold:
(i) $\left\|x \otimes_{A} y\right\|_{A}=\|x\|_{A}\|y\|_{A}$.
(ii) $\omega_{A}\left(x \otimes_{A} y\right)=\frac{1}{2}\left(\left|\langle x, y\rangle_{A}\right|+\|x\|_{A}\|y\|_{A}\right)$.

Now we are ready to prove Theorem 2.5.
Proof of Theorem 2.5. (1) $\Leftrightarrow(2)$: Follows immediately from Theorem 2.3.
$(2) \Leftrightarrow(3)$: By the equivalence $(2) \Leftrightarrow(3)$ of Theorem 2.3 we infer that

$$
d \omega_{A}\left(x \otimes_{A} y\right)=\sqrt{\omega_{A}^{2}\left(x \otimes_{A} y\right)+\left\|x \otimes_{A} y\right\|_{A}^{4}} \Leftrightarrow \omega_{A}\left(x \otimes_{A} y\right)=\left\|x \otimes_{A} y\right\|_{A}
$$

Moreover, by using Lemma E, we see that

$$
\begin{aligned}
\omega_{A}\left(x \otimes_{A} y\right)=\left\|x \otimes_{A} y\right\|_{A} & \Leftrightarrow \frac{1}{2}\left(\left|\langle x, y\rangle_{A}\right|+\|x\|_{A}\|y\|_{A}\right)=\|x\|_{A}\|y\|_{A} \\
& \Leftrightarrow\left|\langle x, y\rangle_{A}\right|=\|x\|_{A}\|y\|_{A}
\end{aligned}
$$

On the other hand $\left|\langle x, y\rangle_{A}\right|=\|x\|_{A}\|y\|_{A}$ if and only if the vectors $A^{1 / 2} x$ and $A^{1 / 2} y$ are linearly dependent.
$(3) \Leftrightarrow(4)$: This equivalence follows immediately since $\mathcal{N}(A)=\mathcal{N}\left(A^{1 / 2}\right)$. Hence, the proof is complete.

3. Further characterizations of A-seminorm-parallelism

Our aim in this section is to give further characterizations of A-seminormparallelism via A-Birkhoff-James orthogonality of A-bounded operators. Our first result in this section reads as follows.

Theorem 3.1. Let $T, S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$, then the following conditions are equivalent:
(1) $T \|_{A} S$.
(2) $T \perp_{A}^{B J}\|S\|_{A} T-\lambda\|T\|_{A} S$, for some $\lambda \in \mathbb{T}$.
(3) $S \perp_{A}^{B J} \lambda\|T\|_{A} S-\|S\|_{A} T$, for some $\lambda \in \mathbb{T}$.

In addition, if $\|T\|_{A}\|S\|_{A} \neq 0$, then (1) to (3) are also equivalent to
(4) There exist a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} and $\lambda \in \mathbb{T}$ such that

$$
\lim _{n \rightarrow+\infty}\left\|S x_{n}\right\|_{A}=\|S\|_{A} \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left\|T x_{n}-\lambda \frac{\|T\|_{A}}{\|S\|_{A}} S x_{n}\right\|_{A}=0
$$

(5) There exist a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} and $\lambda \in \mathbb{T}$ such that

$$
\lim _{n \rightarrow+\infty}\left\|T x_{n}\right\|_{A}=\|T\|_{A} \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left\|S x_{n}-\lambda \frac{\|S\|_{A}}{\|T\|_{A}} T x_{n}\right\|_{A}=0
$$

In order to prove Theorem 3.1 we need to recall from [27] the following result.

Theorem F. ([27]) Let $T, S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$. Then, $T \perp_{A}^{B J} S$ if and only if there exists a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} such that

$$
\lim _{n \rightarrow+\infty}\left\|T x_{n}\right\|_{A}=\|T\|_{A} \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left\langle T x_{n}, S x_{n}\right\rangle_{A}=0
$$

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. (1) $\Leftrightarrow(2)$: Assume that $T \|_{A} S$. If $\|S\|_{A}=0$, then by using (1.4) it can be seen that the assertion (2) holds. Now, suppose that $\|S\|_{A} \neq 0$. Since $T \|_{A} S$, then by Lemma 2.1 there exist a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} and $\lambda \in \mathbb{T}$ such that

$$
\lim _{n \rightarrow+\infty}\left\langle T x_{n}, S x_{n}\right\rangle_{A}=\lambda\|T\|_{A}\|S\|_{A}
$$

So, by Remark $2.1 \lim _{n \rightarrow+\infty}\left\|T x_{n}\right\|_{A}=\|T\|_{A}$. Furthermore, we see that

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty}\left\langle T x_{n},\left(\|S\|_{A} T-\lambda\|T\|_{A} S\right) x_{n}\right\rangle_{A} \\
& =\lim _{n \rightarrow+\infty}\|S\|_{A}\left\|T x_{n}\right\|_{A}^{2}-\bar{\lambda}\|T\|_{A}\left\langle T x_{n}, S x_{n}\right\rangle_{A} \\
& =\|S\|_{A}\|T\|_{A}^{2}-\|T\|_{A}^{2}\|S\|_{A}=0 .
\end{aligned}
$$

Thus, in view of Theorem F, the second assertion holds. Conversely, assume $T \perp_{A}^{B J}\|S\|_{A} T-\lambda\|T\|_{A} S$, for some $\lambda \in \mathbb{T}$. If $\|T\|_{A}=0$, then obviously $T \|_{A} S$. Suppose that $\|T\|_{A} \neq 0$. By Theorem F, there exists a sequence of A-unit vectors $\left\{y_{n}\right\}$ in \mathcal{H} such that

$$
\lim _{n \rightarrow+\infty}\left\|T y_{n}\right\|_{A}=\|T\|_{A} \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left\langle T y_{n},\left(\|S\|_{A} T-\lambda\|T\|_{A} S\right) y_{n}\right\rangle_{A}=0
$$

Then, we deduce that

$$
\lim _{n \rightarrow+\infty}\left\langle T y_{n}, S y_{n}\right\rangle_{A}=\frac{\lambda}{\|T\|_{A}} \lim _{n \rightarrow+\infty}\|S\|_{A}\left\|T y_{n}\right\|_{A}^{2}=\lambda\|T\|_{A}\|S\|_{A}
$$

$(1) \Leftrightarrow(3)$: The proof is analogous to the previous equivalence by changing the roles between T and S.
$(1) \Leftrightarrow(4)$: By Lemma 2.1 and Remark 2.1, there exist a sequence of A-unit
vectors $\left\{x_{n}\right\}$ in \mathcal{H} and $\lambda \in \mathbb{T}$ such that $\lim _{n \rightarrow+\infty}\left\langle T x_{n}, S x_{n}\right\rangle=\lambda\|T\|_{A}\|S\|_{A}$, $\lim _{n \rightarrow+\infty}\left\|T x_{n}\right\|_{A}=\|T\|_{A}$ and $\lim _{n \rightarrow+\infty}\left\|S x_{n}\right\|_{A}=\|S\|_{A}$. So, since

$$
\left\|T x_{n}-\lambda \frac{\|T\|_{A}}{\|S\|_{A}} S x_{n}\right\|_{A}^{2}
$$

$$
=\left\|T x_{n}\right\|_{A}^{2}-\bar{\lambda} \frac{\|T\|_{A}}{\|S\|_{A}}\left\langle T x_{n}, S x_{n}\right\rangle_{A}-\lambda \frac{\|T\|_{A}}{\|S\|_{A}}\left\langle S x_{n}, T x_{n}\right\rangle_{A}+\frac{\|T\|_{A}^{2}}{\|S\|_{A}^{2}}\left\|S x_{n}\right\|_{A}^{2}
$$

then we deduce that $\lim _{n \rightarrow+\infty}\left\|T x_{n}-\lambda \frac{\|T\|_{A}}{\|S\|_{A}} S x_{n}\right\|_{A}^{2}=0$. Conversely, suppose that (4) holds. Then, we see that

$$
\begin{aligned}
\|S\|_{A}+\|T\|_{A} & \geq\|T+\lambda S\|_{A} \\
& \geq\left\|T x_{n}+\lambda S x_{n}\right\|_{A} \\
& =\left\|\left(T x_{n}-\lambda \frac{\|T\|_{A}}{\|S\|_{A}} S x_{n}\right)-\left(-\lambda S x_{n}-\lambda \frac{\|T\|_{A}}{\|S\|_{A}} S x_{n}\right)\right\|_{A} \\
& \geq\left\|\lambda S x_{n}+\lambda \frac{\|T\|_{A}}{\|S\|_{A}} S x_{n}\right\|_{A}-\left\|T x_{n}-\lambda \frac{\|T\|_{A}}{\|S\|_{A}} S x_{n}\right\|_{A} \\
& =\left(\|S\|_{A}+\|T\|_{A}\right) \frac{\left\|S x_{n}\right\|_{A}}{\|S\|_{A}}-\left\|T x_{n}-\lambda \frac{\|T\|_{A}}{\|S\|_{A}} S x_{n}\right\|_{A} .
\end{aligned}
$$

By taking limits, we get $\|S\|_{A}+\|T\|_{A}=\|T+\lambda S\|_{A}$. Then $T \|_{A} S$.
$(1) \Leftrightarrow(5)$: The proof is analogous to the previous equivalence by changing the roles between T and S.

Corollary 3.1. Let $T \in \mathbb{B}_{A}(\mathcal{H})$. Then the following statements are equivalent:
(1) $T \|_{A} I$.
(2) $T^{p} \|_{A} I$ for every $p \in \mathbb{N}$.
(3) $T^{p} \|_{A}\left(T^{\sharp A}\right)^{p}$ for every $p \in \mathbb{N}$.

Proof. (1) $\Rightarrow(2)$ Assume that $T \|_{A} I$. Then, by Theorem 3.1, there exists a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} and $\lambda \in \mathbb{T}$ such that

$$
\lim _{n \rightarrow+\infty}\left\|T x_{n}-\lambda\right\| T\left\|_{A} x_{n}\right\|_{A}=0
$$

For every $i \in \mathbb{N}$ we have

$$
\begin{aligned}
& \left\|\left(T^{i+1}-\lambda^{i+1}\|T\|_{A}^{i+1} I\right) x_{n}\right\|_{A} \\
& =\left\|T\left(T^{i}-\lambda^{i}\|T\|_{A}^{i} I\right) x_{n}+\lambda^{i}\right\| T\left\|_{A}^{i}\left(T-\lambda\|T\|_{A} I\right) x_{n}\right\|_{A} \\
& \leq\|T\|_{A}\left\|\left(T^{i}-\lambda^{i}\|T\|_{A}^{i} I\right) x_{n}\right\|_{A}+\|T\|_{A}^{i}\left\|\left(T-\lambda\|T\|_{A} I\right) x_{n}\right\|_{A} .
\end{aligned}
$$

So, by induction, it can be shown that for every $p \in \mathbb{N}$ we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|\left(T^{p}-\lambda^{p}\|T\|_{A}^{p} I\right) x_{n}\right\|_{A}=0 \tag{3.1}
\end{equation*}
$$

This implies, by Lemma B, that

$$
\lim _{n \rightarrow+\infty}\left\|\left((\widetilde{T})^{p}-\lambda^{p}\|T\|_{A}^{p} I_{\mathbf{R}\left(A^{1 / 2}\right)}\right) A x_{n}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}=0
$$

for every $p \in \mathbb{N}$. Hence, $\lambda^{p}\|T\|_{A}^{p} \in \sigma_{a}\left((\widetilde{T})^{p}\right)$. So, we obtain

$$
\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}^{p} \leq r\left((\widetilde{T})^{p}\right) \leq\left\|(\widetilde{T})^{p}\right\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)} \leq\|\widetilde{T}\|_{\mathbb{B}\left(\mathbf{R}\left(A^{1 / 2}\right)\right)}^{p}
$$

Thus, an application of Lemma $\mathrm{B}(\mathrm{i})$ gives $\|T\|_{A}^{p}=\left\|T^{p}\right\|_{A}$. So, by taking into consideration (3.1), we get

$$
\lim _{n \rightarrow+\infty}\left\|\left(T^{p}-\lambda^{p}\left\|T^{p}\right\|_{A} I\right) x_{n}\right\|_{A}=0
$$

for every $p \in \mathbb{N}$. Therefore, by Theorem 3.1, we get $T^{p} \|_{A} I$.
Now, the implications $(2) \Rightarrow(3)$ and $(3) \Rightarrow(1)$ follow immediately by using the equivalences of Theorem 2.2.

Remark 3.1. Notice that the equivalence (1) $\Leftrightarrow(2)$ in Corollary 3.1 holds also for A-bounded operators.

A special case of A-seminorm-parallelism between an A-bounded operator $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ and the identity operator, is the following equation:

$$
\begin{equation*}
\|T+I\|_{A}=\|T\|_{A}+1 \tag{3.2}
\end{equation*}
$$

If $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ and satisfies (3.2), we shall say that T satisfies the A Daugavet equation. We remind here that the first person who study (3.2) for $A=I$ was I. K. Daugavet [11]. The equation is one useful property in solving a variety of problems in approximation theory. Abramovich et al. [1] proved that $T \in \mathbb{B}(\mathcal{H})$ satisfies the I-Daugavet equation (respect to the uniform norm) if and only if $\|T\|$ lies in the approximate point spectrum of T.

In the following theorem we shall characterize A-bounded operators which satisfy the A-Daugavet equation.

Theorem 3.2. Let $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$. Then the following conditions are equivalent:
(1) T satisfies the A-Daugavet equation, i.e. $\|T+I\|_{A}=\|T\|_{A}+1$.
(2) $\|T\|_{A} \in \overline{W_{A}(T)}$.
(3) $I \perp_{A}^{B J}\|T\|_{A} I-T$.
(4) $T \perp_{A}^{B J} T-\|T\|_{A} I$.

Proof. (2) \Rightarrow (1) Assume that $\|T\|_{A} \in \overline{W_{A}(T)}$. Then, there exits a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} such that $\lim _{n \rightarrow+\infty}\left\langle T x_{n}, x_{n}\right\rangle_{A}=\|T\|_{A}$. Thus

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \Re\left(\left\langle T x_{n}, x_{n}\right\rangle\right)_{A}=\|T\|_{A} . \tag{3.3}
\end{equation*}
$$

Further, since

$$
\begin{aligned}
\|T\|_{A}^{2}+2\left|\left\langle T x_{n}, x_{n}\right\rangle_{A}\right|+1 & \leq\|T\|_{A}^{2}+2\left\|T x_{n}\right\|_{A}+1 \\
& \leq\|T\|_{A}^{2}+2\|T\|_{A}+1=\left(\|T\|_{A}+1\right)^{2}
\end{aligned}
$$

for all $n \in \mathbb{N}$, then we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|T x_{n}\right\|_{A}=\|T\|_{A} \tag{3.4}
\end{equation*}
$$

Hence, by using (3.3) together with (3.4) we see that

$$
\begin{aligned}
\left(\|T\|_{A}+1\right)^{2} & =\lim _{n \rightarrow+\infty}\left\|T x_{n}\right\|_{A}^{2}+2 \lim _{n \rightarrow+\infty} \Re\left(\left\langle T x_{n}, x_{n}\right\rangle_{A}\right)+1 \\
& =\lim _{n \rightarrow+\infty}\left\|(T+I) x_{n}\right\|_{A}^{2} \leq\|T+I\|_{A}^{2} \leq\left(\|T\|_{A}+1\right)^{2} .
\end{aligned}
$$

So $\|T+I\|_{A}=\|T\|_{A}+1$.
(1) \Rightarrow (2) Suppose that $\|T+I\|_{A}=\|T\|_{A}+1$. Then, by (1.3) there exists a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|T x_{n}+x_{n}\right\|_{A}=\|T\|_{A}+1 \tag{3.5}
\end{equation*}
$$

Since

$$
\left\|T x_{n}+x_{n}\right\|_{A} \leq\left\|T x_{n}\right\|_{A}+1 \leq\|T\|_{A}+1
$$

then, by using (3.5), we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|T x_{n}\right\|_{A}=\|T\|_{A} \tag{3.6}
\end{equation*}
$$

On the other hand, since

$$
\left\|T x_{n}+x_{n}\right\|_{A}^{2}=\left\|T x_{n}\right\|_{A}^{2}+1+2 \Re\left(\left\langle T x_{n}, x_{n}\right\rangle_{A}\right)
$$

for all $n \in \mathbb{N}$, then it follows from (3.5) together with (3.6) that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \Re\left(\left\langle T x_{n}, x_{n}\right\rangle_{A}\right)=\|T\|_{A} \tag{3.7}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Further, if $\Im(z)$ denotes the imaginary part of $z \in \mathbb{C}$, then for every $n \in \mathbb{N}$, we see that
$\Re^{2}\left(\left\langle T x_{n}, x_{n}\right\rangle_{A}\right) \leq \Re^{2}\left(\left\langle T x_{n}, x_{n}\right\rangle_{A}\right)+\Im^{2}\left(\left\langle T x_{n}, x_{n}\right\rangle_{A}\right)=\left|\left\langle T x_{n}, x_{n}\right\rangle_{A}\right|^{2} \leq\|T\|_{A}^{2}$.
So, by (3.7), we infer that $\lim _{n \rightarrow+\infty} \Im\left(\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right)=0$. This yields, through (3.7), that

$$
\lim _{n \rightarrow+\infty}\left\langle T x_{n}, x_{n}\right\rangle_{A}=\|T\|_{A}
$$

Thus, we conclude that $\|T\|_{A} \in \overline{W_{A}(T)}$.
(1) $\Leftrightarrow(3)$ Assume that T satifies the A-Daugavet equation. Then, by the equivalence between (1) and (2), we have $\|T\|_{A} \in \overline{W_{A}(T)}$. So, there exists a sequence of A-unit vectors $\left\{x_{n}\right\}$ in \mathcal{H} satisfying

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\langle T x_{n}, x_{n}\right\rangle_{A}=\|T\|_{A} \tag{3.8}
\end{equation*}
$$

This implies that

$$
\lim _{n \rightarrow+\infty}\left\|I x_{n}\right\|_{A}=\|I\|_{A}=1 \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left\langle\left(T-\|T\|_{A} I\right) x_{n}, x_{n}\right\rangle_{A}=0
$$

then by Theorem F, we have $I \perp_{A}^{B J}\|T\|_{A} I-T$. The converse is analogous. (1) $\Leftrightarrow(4)$ Assume that T satifies the A-Daugavet equation. Let $\left\{x_{n}\right\}$ a sequence of A-unit vectors in \mathcal{H} satisfying (3.8). Then

$$
\|T\|_{A} \geq\left\|T x_{n}\right\|_{A} \geq\left|\left\langle T x_{n}, x_{n}\right\rangle_{A}\right| \geq\|T\|_{A}-\varepsilon
$$

for any $\varepsilon>0$ and n large enough. Hence, $\lim _{n \rightarrow+\infty}\left\|T x_{n}\right\|_{A}=\|T\|_{A}$. Futhermore,

$$
\lim _{n \rightarrow+\infty}\left\langle T x_{n},\left(T-\|T\|_{A} I\right) x_{n}\right\rangle_{A}=\lim _{n \rightarrow+\infty}\left\|T x_{n}\right\|_{A}^{2}-\|T\|_{A}\left\langle T x_{n}, x_{n}\right\rangle_{A}=0
$$

So, by Theorem F, we deduce that $T \perp_{A}^{B J} T-\|T\|_{A} I$. Conversely, assume that $T \perp_{A}^{B J} T-\|T\|_{A} I$. If $\|T\|_{A}=0$, then by using (1.4) we see that the assertion (1) holds trivially. Now, suppose that $\|T\|_{A} \neq 0$. By Theorem F, there exists a sequence of A-unit vectors $\left\{y_{n}\right\}$ in \mathcal{H} such that

$$
\lim _{n \rightarrow+\infty}\left\|T y_{n}\right\|_{A}=\|T\|_{A} \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left\langle T y_{n},\left(T-\|T\|_{A} I\right) y_{n}\right\rangle_{A}=0
$$

So, it follows that

$$
\lim _{n \rightarrow+\infty}\left\langle T y_{n}, y_{n}\right\rangle_{A}=\frac{1}{\|T\|_{A}} \lim _{n \rightarrow+\infty}\left\|T y_{n}\right\|_{A}^{2}=\|T\|_{A}
$$

i.e. $\|T\|_{A} \in \overline{W_{A}(T)}$. Hence, by the equivalence (1) $\Leftrightarrow(2)$, the assertion (1) holds. Therefore, the proof is complete.

4. A-Bikhorff-James orthogonality and distance formulas

We begin this section by recalling from [27] the following definition.
Definition 4.1. Let $T, S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$. The A-distance between T and S, denoted by $d_{A}(T, \mathbb{C} S)$, is defined as

$$
d_{A}(T, \mathbb{C} S):=\inf _{\gamma \in \mathbb{C}}\|T+\gamma S\|_{A}
$$

Our first result in this section provides an upper bound for the nonnegative quantity $\|T\|_{A}^{2}-\omega_{A}^{2}(T)$, with $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ related to $d_{A}(T, \mathbb{C} I)$.

Theorem 4.1. Let $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$. Then,

$$
\begin{equation*}
\|T\|_{A}^{2}-\omega_{A}^{2}(T) \leq d_{A}^{2}(T, \mathbb{C} I) \tag{4.1}
\end{equation*}
$$

Proof. Notice first that for any $a, b \in \mathcal{H}$ with $b \neq 0$, we have

$$
\inf _{\lambda \in \mathbb{C}}\|a-\lambda b\|^{2}=\frac{\|a\|^{2}\|b\|^{2}-|\langle a, b\rangle|^{2}}{\|b\|^{2}}
$$

This implies that

$$
\begin{equation*}
\|a\|^{2}\|b\|^{2}-|\langle a, b\rangle|^{2} \leq\|b\|^{2}\|a-\lambda b\|^{2}, \tag{4.2}
\end{equation*}
$$

for any $a, b \in \mathcal{H}$ and $\lambda \in \mathbb{C}$. Let $x, y \in \mathcal{H}$ and $\lambda \in \mathbb{C}$. By choosing $a=A^{1 / 2} x$ and $b=A^{1 / 2} y$ in (4.2), we obtain

$$
\begin{equation*}
\|x\|_{A}^{2}\|y\|_{A}^{2}-\left|\langle x, y\rangle_{A}\right|^{2} \leq\|y\|_{A}^{2}\|x-\lambda y\|_{A}^{2}, \tag{4.3}
\end{equation*}
$$

Now, by choosing in (4.3) $x=T z$ and $y=z$ with $z \in \mathcal{H},\|z\|_{A}=1$, we get

$$
\|T z\|_{A}^{2}-\left|\langle T z, z\rangle_{A}\right|^{2} \leq\|T z-\lambda z\|_{A}^{2},
$$

By taking the supremum over all $z \in \mathcal{H}$ with $\|z\|_{A}=1$, we obtain

$$
\|T\|_{A}^{2}-\omega_{A}^{2}(T) \leq \inf _{\lambda \in \mathbb{C}}\|T-\lambda I\|_{A}^{2}
$$

This finishes the proof of the theorem.
Remark 4.1. Notice that the third author proved in [17, Theorem 2.22.] that for every $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ we have

$$
\begin{equation*}
\omega_{A}^{2}(T) \leq \frac{1}{2}\left(\omega_{A}\left(T^{2}\right)+\|T\|_{A}^{2}\right) \tag{4.4}
\end{equation*}
$$

So, by combining (4.4) together with (4.1), we obtain

$$
\omega_{A}^{2}(T)-\omega_{A}\left(T^{2}\right) \leq \frac{1}{2}\left(\|T\|_{A}^{2}-\omega_{A}\left(T^{2}\right)\right) \leq\|T\|_{A}^{2}-\omega_{A}\left(T^{2}\right) \leq d_{A}^{2}(T, \mathbb{C} I)
$$

for any $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$.
Next, we recall from [27] that the A-minimum modulus of an operator $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ is given by

$$
m_{A}(T)=\inf \left\{\|T x\|_{A} ; x \in \mathcal{H}, \quad\|x\|_{A}=1\right\}
$$

This concept is useful in characterizing the A-Bikhorff-James orthogonality in $\mathbb{B}_{A^{1 / 2}}(\mathcal{H})$. More precisely, we have the following result.

Theorem G. ([27, Theorem 3.2]) Let $T, S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ with $m_{A}(S)>0$. Then there exists a unique $t_{0} \in \mathbb{C}$ such that

$$
\begin{equation*}
\left\|\left(T-t_{0} S\right)+\gamma S\right\|_{A}^{2} \geq\left\|\left(T-t_{0} S\right)\right\|_{A}^{2}+|\gamma|^{2} m_{A}^{2}(S) \tag{4.5}
\end{equation*}
$$

for every $\gamma \in \mathbb{C}$. Futhermore, such t_{0} satisfies the following property

$$
\left\|T-t_{0} S\right\|_{A}=d_{A}(T, \mathbb{C} S)
$$

Inspiring from the definition of center of mass in the case of Hilbert space operators due to Barra and Bouzmagour (see [5]), we define the following new concept.

Definition 4.2. Given $T, S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ with $m_{A}(S)>0$. The A-center of mass of T relatively to S, denoted by $c_{A}(T, S)$, is defined to be the unique $t_{0} \in \mathbb{C}$ specified in Theorem G. That is

$$
\left\|T-c_{A}(T, S) S\right\|_{A}=d_{A}(T, \mathbb{C} S)
$$

For a given $T, S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ with $m_{A}(S)>0$, Zamani proved in [27, Theorem 3.4] that

$$
\begin{equation*}
d_{A}^{2}(T, \mathbb{C} S)=\sup _{\|x\|_{A}=1}\left(\|T x\|_{A}^{2}-\frac{\left|\langle T x, S x\rangle_{A}\right|^{2}}{\|S x\|_{A}^{2}}\right) \tag{4.6}
\end{equation*}
$$

One of the methods to compute the center of mass of an operator is Williams's theorem [25]. However, it is not usually easy to determine the exact value of
it even in the finite dimensional case. In what follows, we investigate how to determine explicitly the number $c_{A}(T, S)$.

Theorem 4.2. Let $T, S \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ with $m_{A}(S)>0$. Then

$$
c_{A}(T, S)=\lim _{n \rightarrow+\infty} \frac{\left\langle T x_{n}, S x_{n}\right\rangle_{A}}{\left\|S x_{n}\right\|_{A}^{2}}
$$

where $\left\{x_{n}\right\}$ be a sequence of A-unit vectors, approximating the supremum in (4.6).

Proof. By the hypothesis, $m_{A}(S)>0$, we can conclude that $\|S x\|_{A} \geq$ $m_{A}(S)>0$ for all $x \in \mathcal{H}$ with $\|x\|_{A}=1$. For sake of simplicity we denote $c_{A}=c_{A}(T, S)$. Let $\left\{x_{n}\right\}$ be a sequence of A-unit vectors, approximating the supremum in (4.6). Then

$$
\begin{aligned}
& \left|\frac{\left\langle T x_{n}, S x_{n}\right\rangle_{A}}{\left\|S x_{n}\right\|_{A}}-c_{A}\left\|S x_{n}\right\|_{A}\right|^{2} \\
& =\frac{\left|\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right|^{2}}{\left\|S x_{n}\right\|_{A}^{2}}-2 \Re\left(\left\langle T x_{n}, c_{A} S x_{n}\right\rangle_{A}\right)+\left|c_{A}\right|^{2}\left\|S x_{n}\right\|_{A}^{2} \\
& =\left\|\left(T-c_{A} S\right) x_{n}\right\|_{A}^{2}-\left\|T x_{n}\right\|_{A}^{2}+\frac{\left|\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right|^{2}}{\left\|S x_{n}\right\|_{A}^{2}} \\
& \leq\left\|\left(T-c_{A} S\right)\right\|_{A}^{2}-\left\|T x_{n}\right\|_{A}^{2}+\frac{\left|\left\langle T x_{n}, S x_{n}\right\rangle_{A}\right|^{2}}{\left\|S x_{n}\right\|_{A}^{2}} .
\end{aligned}
$$

As $\|S x\|_{A} \geq m_{A}(S)$ for any $\|x\|_{A}=1$, we obtain the following inequality

$$
\left|\frac{\left\langle T x_{n}, S x_{n}\right\rangle_{A}}{\left\|S x_{n}\right\|_{A}^{2}}-c_{A}\right| \leq \frac{1}{m_{A}(S)}\left|\frac{\left\langle T x_{n}, S x_{n}\right\rangle_{A}}{\left\|S x_{n}\right\|_{A}}-c_{A}\left\|S x_{n}\right\|_{A}\right| \xrightarrow{n \rightarrow+\infty} 0 .
$$

Two particular cases of the special interest are considered in the next statement, first one when $S=T^{\sharp A}$ and later when in addition T is A-normal.

Corollary 4.1. Let $T \in \mathbb{B}_{A}(\mathcal{H})$ with $m_{A}\left(T^{\sharp_{A}}\right)>0$. Then

$$
c_{A}\left(T, T^{\sharp A}\right)=\lim _{n \rightarrow+\infty} \frac{\left\langle T^{2} x_{n}, x_{n}\right\rangle_{A}}{\left\|T^{\sharp A} x_{n}\right\|_{A}^{2}},
$$

where $\left\{x_{n}\right\}$ be a sequence of A-unit vectors, approximating the supremum in (4.6). In addition, if T is A-normal, then $\left|c_{A}\left(T, T^{\sharp_{A}}\right)\right| \leq 1$.

The following theorem is a natural generalization of a result due to Fujii and Prasanna in [19].

Theorem 4.3. Let $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$. Then

$$
W_{A}(T) \subseteq D\left(c_{A}(T, I), d_{A}(T, \mathbb{C} I)\right)
$$

where $D\left(\lambda_{0}, r_{0}\right)$ denotes the closed disc centered at λ_{0} and with radius r_{0}.

Proof. We split the proof in two cases.
Case 1: $c_{A}(T, I)=0$ i.e. $d_{A}(T, \mathbb{C} I)=\|T\|_{A}$. Then for any $x \in \mathcal{H}$ with $\|x\|_{A}=1$, we have

$$
\begin{equation*}
\left|\langle T x, x\rangle_{A}\right| \leq \omega_{A}(T) \leq\|T\|_{A}=d_{A}(T, \mathbb{C} I) \tag{4.7}
\end{equation*}
$$

Case 2: $c_{A}(T, I) \neq 0$ i.e. $d_{A}(T, \mathbb{C} I)=\left\|T-c_{A}(T, I) I\right\|_{A}$. Let us consider $T_{0}:=T-c_{A}(T, I) I$. Then $T_{0} \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ and $c_{A}\left(T_{0}, I\right)=0$. Applying (4.7), we obtain for any $x \in \mathcal{H},\|x\|_{A}=1$

$$
\left|\langle T x, x\rangle_{A}-c_{A}(T, I)\right|=\left|\left\langle T_{0} x, x\right\rangle_{A}\right| \leq\left\|T_{0}\right\|_{A}=d_{A}(T, \mathbb{C} I) .
$$

This completes the proof.
Proposition 4.1. Let $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$. Then

$$
\begin{equation*}
d_{A}(T, \mathbb{C} I) \leq\|T\|_{A} d_{A}(I, \mathbb{C} T) \tag{4.8}
\end{equation*}
$$

Proof. Let $x \in \mathcal{H}$ with $\|x\|_{A}=1$. One observes that

$$
\alpha_{A}(T)\|T x\|_{A} \leq\left|\langle T x, x\rangle_{A}\right|,
$$

where $\alpha_{A}(T)=\inf \left\{\frac{\left|\langle T y, y\rangle_{A}\right|}{\|T y\|_{A}}:\|T y\|_{A} \neq 0,\|y\|_{A}=1\right\}$ if $\|T\|_{A} \neq 0$ or $\alpha_{A}(T)=$ 0 if $\|T\|_{A}=0$. Thus, we see that

$$
\|T x\|_{A}^{2}-\left|\langle T x, x\rangle_{A}\right|^{2} \leq\left(1-\alpha_{A}^{2}(T)\right)\|T x\|_{A}^{2} \leq d_{A}^{2}(I, \mathbb{C} T)\|T x\|_{A}^{2} .
$$

Now, calculating the supremum of the both sides, over all $x \in \mathcal{H}$ with $\|x\|_{A}=$ 1 , we complete the proof.

Remark 4.2. By combining (4.1) together with (4.8), we obtain

$$
\|T\|_{A}^{2}-\omega_{A}^{2}(T) \leq d_{A}^{2}(T, \mathbb{C} I) \leq\|T\|_{A}^{2} d_{A}^{2}(I, \mathbb{C} T)
$$

Corollary 4.2. Let $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$. If $T \perp_{A}^{B J} I$, then $I \perp_{A}^{B J} T$.
Proof. By (4.8), we have

$$
\|T\|_{A}=d_{A}(T, \mathbb{C} I) \leq\|T\|_{A} d_{A}(I, \mathbb{C} T)
$$

So, if $\|T\|_{A} \neq 0$, then $1 \leq d_{A}(I, \mathbb{C} T) \leq\|I\|_{A}=1$, i.e. $d_{A}(I, \mathbb{C} T)=\|I\|_{A}=1$.
On the other hand, if $\|T\|_{A}=0$ then $\|T x\|_{A}=0$ for all $x \in \mathcal{H},\|x\|_{A}=1$.
From [27, Theorem 3.4], we have that

$$
d_{A}^{2}(I, \mathbb{C} T)=\sup \left\{\|I x\|_{A}^{2} ;\|x\|_{A}=1\right\}=1=\|I\|_{A}
$$

In conclusion, in both cases, we obtain that $I \perp_{A}^{B J} T$.
The converse of the previous result is false in general, as we see in the next example

Example 4.1. Consider in $\mathcal{H}=\mathbb{C}^{3}$ with the usual uniform norm and let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the canonical basis for \mathcal{H}. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$. Then $A=P_{\mathcal{M}}$
the orthogonal projection on $\mathcal{M}=$ gen $\left\{e_{1}, e_{2}\right\}$ and $A^{2}=A^{*}=A$. Now, consider $T=\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right) \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$. Let $x=\alpha e_{1}+\beta e_{2}+\gamma e_{3} \in \mathcal{H}$ then $\|x\|_{A}^{2}=\|(\alpha, \beta, \gamma)\|_{A}^{2}=\langle x, x\rangle_{A}=\langle A x, A x\rangle=\|A x\|^{2}=|\alpha|^{2}+|\beta|^{2}=\|(\alpha, \beta)\|^{2}$. Observe that $\|(\alpha, \beta, \gamma)\|_{A}^{2}=1$ if and only if $\|(\alpha, \beta)\|^{2}=1$. Further, we have $\|T\|_{A}^{2}=\sup \left\{\|T x\|_{A}^{2}: x \in \mathbb{C}^{3},\|x\|_{A}=1\right\}=\sup \left\{\|A T x\|^{2}: x \in \mathbb{C}^{3},\|x\|_{A}=1\right\}$ $=\sup \left\{\|\bar{T} x\|^{2}: \bar{x} \in \mathbb{C}^{2},\|\bar{x}\|=1\right\}=\|\bar{T}\|^{2}=4$,
where $\bar{T}=\left(\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right) \in \mathbb{B}\left(\mathbb{C}^{2}\right)$. If I_{n} denotes the identity operator in $\mathbb{B}\left(\mathbb{C}^{n}\right)$, then

$$
\inf _{\lambda \in \mathbb{C}}\left\|T-\lambda I_{3}\right\|_{A}=\inf _{\lambda \in \mathbb{C}}\left\|\bar{T}-\lambda I_{2}\right\|=\frac{3}{2}<\|T\|_{A}=2
$$

i.e. T is not A-Birkhoff-James to I_{3}. On the other hand,

$$
\inf _{\lambda \in \mathbb{C}}\left\|I_{3}-\lambda T\right\|_{A}=\inf _{\lambda \in \mathbb{C}}\left\|I_{2}-\lambda \bar{T}\right\|=1=\left\|I_{3}\right\|_{A}=1
$$

that is $I_{3} \perp_{A}^{B J} T$.
The following result relates A-Birkhoff-James orthogonality with the attainment of the lower bound of the A-Davis-Wielandt radius.

Theorem 4.4. Let $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ such that $d \omega_{A}(T)=\max \left\{\omega_{A}(T),\|T\|_{A}^{2}\right\}$. Then $T \perp{ }_{A}^{B J} I$.

Proof. We separate in two different cases.
Case 1: Suppose $d \omega_{A}(T)=\|T\|_{A}^{2}$ and take a sequence of A-unit vectors $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow+\infty}\left\|T y_{n}\right\|_{A}^{2}=\|T\|_{A}^{2}$. Then

$$
\left\|T y_{n}\right\|_{A}^{2} \leq \sqrt{\left|\left\langle T y_{n}, y_{n}\right\rangle_{A}\right|^{2}+\left\|T y_{n}\right\|_{A}^{4}} \leq d \omega_{A}(T)=\|T\|_{A}^{2} .
$$

Therefore, we infer that $\lim _{n \rightarrow+\infty}\left|\left\langle T y_{n}, y_{n}\right\rangle_{A}\right|^{2}=0$. This is equivalent, by Theorem F , to $T \perp_{B J}^{A} I$.

Case 2: Suppose $d \omega_{A}(T)=\omega_{A}(T)$ and take a sequence of A-unit vectors $\left\{z_{n}\right\}_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow+\infty}\left|\left\langle T z_{n}, z_{n}\right\rangle_{A}\right|=\omega_{A}(T)$. Then

$$
\left|\left\langle T z_{n}, z_{n}\right\rangle_{A}\right| \leq \sqrt{\left|\left\langle T z_{n}, z_{n}\right\rangle_{A}\right|^{2}+\left\|T z_{n}\right\|_{A}^{4}} \leq d \omega_{A}(T)=\omega_{A}(T)
$$

therefore, $\lim _{n \rightarrow+\infty}\left\|T z_{n}\right\|_{A}^{4}=0$. But

$$
\left|\left\langle T z_{n}, z_{n}\right\rangle_{A}\right| \leq\left\|T z_{n}\right\|_{A} \rightarrow 0
$$

thus $\omega_{A}(T)=0$ and $\|T\|_{A}=0 \leq\|T+\lambda I\|_{A}$ for every $\lambda \in \mathbb{C}$.
We arrive to the next conclusion as a combination of Corollary 4.2 and Theorem 4.4.

Corollary 4.3. Let $T \in \mathbb{B}_{A^{1 / 2}}(\mathcal{H})$ such that $d \omega_{A}(T)=\max \left\{\omega_{A}(T),\|T\|_{A}^{2}\right\}$. Then $T \perp_{A}^{B J} I$ and $I \perp_{A}^{B J} T$.

Remark 4.3. If $T=x \otimes_{A} y$ with $\|x\|_{A},\|y\|_{A} \neq 0$, the attainment of the lower bound of $d \omega_{A}(T)$ implies that $x \perp_{A} y$.

Indeed, first of all, if $u, v \in \mathcal{H}$, then one may observe that

$$
\frac{1}{2}\left(\left|\langle u, v\rangle_{A}\right|+\|u\|_{A}\|v\|_{A}\right) \leq\|u\|_{A}\|v\|_{A}
$$

So, if $d \omega_{A}(T)$ attains its lower bound we may assume that $d w_{A}(T)=\|T\|_{A}^{2}=$ $\|x\|_{A}^{2}\|y\|_{A}^{2}$. Then, we see that

$$
\begin{aligned}
\left|\left\langle T \frac{y}{\|y\|_{A}}, \frac{y}{\|y\|_{A}}\right\rangle_{A}\right| & =\left|\left\langle x, \frac{y}{\|y\|_{A}}\right\rangle_{A}\left\langle\frac{y}{\|y\|_{A}}, y\right\rangle_{A}\right|=\left|\frac{1}{\|y\|_{A}^{2}}\langle x, y\rangle_{A}\|y\|_{A}^{2}\right| \\
& =\left|\langle x, y\rangle_{A}\right|
\end{aligned}
$$

and

$$
\left\|T \frac{y}{\|y\|_{A}}\right\|_{A}^{4}=\frac{1}{\|y\|_{A}^{4}}\left\|\langle y, y\rangle_{A} x\right\|_{A}^{4}=\|y\|_{A}^{4}\|x\|_{A}^{4}
$$

Therefore, we have

$$
\sqrt{\left|\left\langle T \frac{y}{\|y\|_{A}}, \frac{y}{\|y\|_{A}}\right\rangle_{A}\right|^{2}+\left\|T \frac{y}{\|y\|_{A}}\right\|_{A}^{4}}=\sqrt{\left|\langle x, y\rangle_{A}\right|^{2}+\|y\|_{A}^{4}\|x\|_{A}^{4}}
$$

In particular, we obtain that

$$
d \omega_{A}^{2}(T) \geq\left|\langle x, y\rangle_{A}\right|^{2}+\|y\|_{A}^{4}\|x\|_{A}^{4} .
$$

Since by hypothesis, $d w_{A}(T)=\|x\|_{A}^{2}\|y\|_{A}^{2}$, then it follows that $\|x\|_{A}^{4}\|y\|_{A}^{4}=$ $d \omega_{A}^{2}(T) \geq\left|\langle x, y\rangle_{A}\right|^{2}+\|x\|_{A}^{4}\|y\|_{A}^{4}$. This clearly forces $\langle x, y\rangle_{A}=0$. Hence, $x \perp_{A} y$.

References

[1] Y. Abramovich, C. Aliprantis, O. Burkinshaw, The Daugavet equation in uniformly convex Banach spaces, J. Funct. Anal. 97 (1991), no. 1, 215-230.
[2] M.L. Arias, G. Corach, M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428 (7) (2008), 1460-1475.
[3] M.L. Arias, G. Corach, M.C. Gonzalez, Metric properties of projections in semiHilbertian spaces, Integral Equations and Operator Theory, 62 (2008), 11-28.
[4] M.L. Arias, G. Corach, M.C. Gonzalez, Lifting properties in operator ranges, Acta Sci. Math. (Szeged) 75:3-4(2009), 635-653.
[5] M. Barraa, M. Boumazgour, A note on the orthogonality of bounded linear operators, Funct. Anal. Approx. Comput. 4 (1) (2012), 65-70.
[6] P. Bhunia, K. Feki, K. Paul, A-Numerical radius orthogonality and parallelism of semiHilbertian space operators and their applications, Bull. Iran. Math. Soc. 47 (2021), 435-457. https://doi.org/10.1007/s41980-020-00392-8
[7] H. Baklouti, K. Feki, O.A.M. Sid Ahmed, Joint numerical ranges of operators in semi-Hilbertian spaces, Linear Algebra Appl. 555 (2018), 266-284.
[8] H. Baklouti, K. Feki, O.A.M. Sid Ahmed, Joint normality of operators in semiHilbertian spaces, Linear Multilinear Algebra 68 (4) (2020), 845-866.
[9] L. de Branges, J. Rovnyak, Square Summable Power Series, Holt, Rinehert and Winston, New York, 1966.
[10] C. Conde, K. Feki, On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators, Ricerche mat (2021). https://doi.org/10.1007/ s11587-021-00629-6
[11] I. K. Daugavet, On a property of completely continuous operators in the space C, Uspekhi Mat. Nauk. 18 (5) (1963), 157-158. [in Russian]
[12] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-416.
[13] M. Faghih-Ahmadi, F. Gorjizadeh, A-numerical radius of A-normal operators in semiHilbertian spaces, Ital. J. Pure Appl. Math. 36 (2016), 73-78.
[14] K. Feki, On tuples of commuting operators in positive semidefinite inner product spaces, Linear Algebra Appl. 603 (2020), 313-328.
[15] K. Feki, Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal. 11 (2020), 929-946. https://doi.org/10.1007/s43034-020-00064-y.
[16] K. Feki, A note on the A-numerical radius of operators in semi-Hilbert spaces, Arch. Math. 115, (2020), 535-544. https://doi.org/10.1007/s00013-020-01482-z
[17] K. Feki, Some numerical radius inequalities for semi-Hilbert space operators, J. Korean Math. Soc. (2021). https://doi.org/10.4134/JKMS.j210017
[18] K. Feki, O.A.M. Sid Ahmed, Davis-Wielandt shells of semi-Hilbertian space operators and its applications, Banach J. Math. Anal. 14 (2020), 1281-1304. https://doi.org/ 10.1007/s43037-020-00063-0
[19] M. Fujii, S. Prasanna, Translatable radii for operators, Math. Japon. 26 (1981), no. 6, 653-657.
[20] K. E. Gustafson, D. K. M. Rao, Numerical Range. The Field of Values of Linear Operators and Matrices, Universitext, Springer-Verlag, New York, 1997.
[21] W. Majdak, N.A. Secelean, L. Suciu, Ergodic properties of operators in some semiHilbertian spaces, Linear and Multilinear Algebra, 61:2 (2013), 139-159.
[22] G. J. Murphy, C^{*}-Algebras and Operator Theory, Academic Press, New York, 1990.
[23] A, Saddi, A-normal operators in semi Hilbertian spaces,Aust. J. Math. Anal. Appl., 9 (2012), no.1, 5-12.
[24] J. Sen, D. Sain, K. Paul, K. Orthogonality and norm attainment of operators in semi-Hilbertian spaces. Ann. Funct. Anal. 12, 17 (2021). https://doi.org/10.1007/ s43034-020-00104-7
[25] J.P. Williams, Finite operators, Proc. Amer. Math. Soc, 26 (1970), 129-136.
[26] A. Zamani, M. S. Moslehian, Exact and approximate operator parallelism, Canad Math Bull. 58(1) (2015), 207-224.
[27] A. Zamani, Birkhoff-James orthogonality of operators in semi-Hilbertian spaces and its applications, Ann. Funct. Anal. 10 (3) (2019), 433-445.

Tamara Bottazzi ${ }^{1}{ }^{1, b}$
${ }^{[1 a]}$ Universidad Nacional de Río Negro. LaPAC, Sede Andina (8400) S.C. de Bariloche, Argentina.
${ }^{\left[1_{b}\right]}$ Consejo Nacional de Investigaciones Científicas y Técnicas, (1425) Buenos Aires, Argentina.
e-mail: tbottazzi@unrn.edu.ar
Cristian Conde ${ }^{2} a, b$
${ }^{[2 a]}$ Instituto Argentino de Matemática "Alberto Calderón", Saavedra 15 3er. piso, (C1083ACA), Buenos Aires, Argentina
${ }^{[2 b]}$ Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J. M. Gutierrez 1150, (B1613GSX) Los Polvorines, Argentina
e-mail: cconde@campus.ungs.edu.ar
Kais Feki ${ }^{3}$ a,b
${ }^{[3 a]}$ University of Monastir, Faculty of Economic Sciences and Management of Mahdia, Mahdia, Tunisia
${ }^{\left[3_{b}\right]}$ Laboratory Physics-Mathematics and Applications (LR/13/ES-22), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
e-mail: kais.feki@hotmail.com; kais.feki@fsegma.u-monastir.tn

