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Abstract. This paper analyzes the distribution logistics
for a retail business that has hundreds of stores located
long  distances  from  their  warehouses.  Given  narrow
revenue  margins,  retail  companies  must  optimize  the
cost of the merchandise delivery to its stores. In general,
the structure of the distribution consists of warehouses
that concentrate goods which are then delivered to the
stores  according  to  a  replenishment  policy  that
contemplates its characteristics and location. The cost of
the  distribution  logistics  is  significant  and  deserves
special consideration. This paper presents a disjunctive
multiperiod model to redesign the logistic infrastructure
of delivering goods from warehouses to stores located in
a wide geographical region. In the model, a warehouse
can  be  installed,  closed,  expanded  or  replaced  by  a
cross-docking  terminal.  The  objective  function  is  to
minimize the cost of the whole distribution operation. A
case study is presented to show the model capabilities.
Keywords: retail  business  –  optimization-  logistic
structure – replenishment goods

1. INTRODUCTION

Distribution  logistics  is  an  important  operation  for  retail  business.  Due  to
narrow  revenue  margins,  companies  must  deliver  goods  on  time  with  the
lowest  possible  cost.  For  companies  having  hundreds  of  stores  distributed
nationwide, located long distances from their warehouses, the impact of the
cost of delivering goods is significant. The configuration of the distribution net,
delivery policies and the selection of optimal routes are important matters to
overcome  this  problem  (Christopher,  2016).  The  characteristics  of  the
distribution  logistics  vary  according  to  the  type  of  the  retail  business,  in
general, the structure consists of warehouses that concentrate goods, which
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then are delivered to the sale stores following a replenishment pattern (Ballou,
2004). The replenishment is based on the store demand, which differs among
locations (Agrawal and Smith, 2017). Trucks are the most used transportation
medium because of its flexibility since they can go anywhere where there are
roads.  In  some  cases,  a  cross-docking  terminal  is  used  in  the  distribution
structure in order to split the delivery into smaller parts to be sent to different
locations or to reach places where large trucks are not permitted.

This  work  presents  an  optimization  model  to  redesign  the  replenishment
configuration  of  a  retail  company  having  sale  stores  located  along  a  large
geographical region.  Despite the importance of retail business in the economy,
papers in the literature are scarce in retail store operations and logistics. Mou
et al. (2018) reviewed this situation, the authors analyzed about 255 papers
from 32 scientific journals dealing with retail store operations, they discussed
the  limitations  and  opportunity  areas  to  be  studied.  In  particular,  they
established  that  in  store  logistics  deserves  more  attention  when  multiple
products  are  involved  and  the  coordination  between  delivery  and  shelf
replenishment is needed. Since those authors perform a review of scientific
articles about retail store operations, it is an important reference to find papers
related to that matter.  Nevertheless,  there are some works in the literature
dealing  with  similar  problems.  Holzapfel  et  al.  (2016)  present  a  decision
support  model  that  integrates  warehouse operations,  transportation,  and in
store replenishment. They explore how the decisions on the delivery pattern
affect  retail  operations  and  its  logistics.  A  heuristic  solution  approach  is
developed to generate the same delivery pattern for each store. They provide a
characterization of the retail network structure that was an inspiration source
for this work. It served to define the distribution network among warehouses
and the stores. The authors claim that having stable store clusters and tours,
reduce short-term operational  complexity  and increase service quality.  Cost
improvements are on average 2.5 percent and up to 7 percent using simulated
data and 1.5 percent in the case of a European grocery retailer. 

Cardós and García-Sabater (2006) propose a model to design the retail chain
inventory  replenishment  policy  considering  the  transportation  cost  and
inventory, the stock level and client service. They determine that in the design
of a retail chain, the minimal cost to give a good service to the clients is a
trade-off between the inventory level for each shop and delivery policies from
central warehouses. For this study, the authors analyze the conjoint problem: a
variation of  the vehicle routing problem (VRP) as an extension of inventory
management in the supply chain context. These authors analyze the delivery
frequency and patterns together with the cost  determination,  which for  our
proposal becomes the definition of delivery routes, the travel distances, and
the transportation cost.  Milson and Smirnof (2016), apply a game theoretic
framework  to  analyze  the  effects  of  transportation  infrastructure  where
competing retail firms are located close to each other. The results show that
companies which compete among them, locate their stores next to each other
when they have access to important transportation infrastructure. The authors
highlight the importance of analyzing the transportation infrastructure when
considering the location of retail stores. These issues are relevant to decide the
store  location,  the road  infrastructure,  and the role  of  having stores of  the
competence located nearby, but those aspects are not analyzed in this article.



Yao and Hsu (2009) propose a tree-based genetic algorithm (GA) to solve the
configuration  and the transportation  planning  of  a  multi-stage  supply  chain
network. The objective is to determine the optimal locations of the distribution
centers and optimal transportation routes to minimize the total  costs of the
whole system. The authors proposed the GA because they claim that a mixed
integer  nonlinear  program  formulation  is  not  able  to  solve  this  problem
efficiently because of its complexity.

Caridade et al.  (2017) studied the warehouse activities and its costs  in the
logistic functions of  the automotive industry.  The goal  is to restructure and
optimize the efficiency of the warehouse operations. The study is performed by
using the software Warehouse Management System (WMS) integrated into the
company  information  system  (IS).  The  methodology  is,  as  a  first  step,  to
analyze the current situation to identify the aspects  needing improvements
then, to introduce new issues to the software,  like eliminating a third-party
warehouse  that  is  rented,  increase  the  capacity  of  an  existing  one,  and
reorganize  the  shelves.  This  new scenario  is  further  analyzed.  As  a  result,
improvements are observed in the space management and its cost-efficiency,
and also in the inventory administration.  They tackle similar issues like the
operation  of  existing  warehouses,  the  installation  of  a  new  one  and  the
activities inside them, but not the delivery logistics. Instead of a mathematical
programming  approach  to  find  an  optimum  they  used  a  specific  software
looking for just an improvement in the whole operation.

Rodriguez et al. (2014) present a strategic and tactical optimization model to
redesign the supply  chain  of  spare parts  under demand uncertainty over  a
planning horizon divided in periods.  The decisions involve new installations,
expansions  and  elimination  of  warehouses  and  factories,  inventory  levels
(safety stock and expected inventory) in distribution centers. The problem is
formulated as a non-linear mixed -integer one; the authors use a piecewise
linearization  to  obtain  a  tight  lower  bound  of  the  optimal  solution.  The
formulation  is  applied  to  the  supply  chain  of  electric  motors  but  can  be
expanded to other industries. These authors propose a good formulation about
the installation of new factories and warehouses, also the capacity expansion
and  elimination  of  existing  ones,  which  was  considered  in  our  work.  They
contemplate investment and operation costs, but for transportation they do not
include neither the distances traveled nor the number of trips, they use instead
the demand and number of days.

Perona et al. (2001) studied the logistic chain management of the white goods
industry  on a sample of  Italian companies,  they analyzed the cost  and the
logistic  chain,  considering  supply,  production,  distribution,  and  sales.  The
authors made an empirical analysis by collecting data from several companies,
dealers,  and customers, via interviews with people. Then they generated an
empirical model to calculate the logistic chain and lost sale costs, considering
different scenarios. They extracted three main conclusions, first they pointed
out the relevance of the logistic cost and lost sales, which is about 30% of the
overall  cost,  in  a  business  where  profitability  is  around  5%.  Second,  the
distribution phase is responsible for about 80% of those costs, requiring a re-
engineering of the chain. Third, they conclude that a better integration among
the  actors  to  exchange  information  would  diminish  the  cost  of  lost  sales.
Although these authors studied a similar supply chain as our example (a white



goods industry) they employed an empirical methodology as an alternative to
mathematical programming, looking for improving the performance instead of
finding the optimum. They highlight the importance of studying the logistic cost
in the operation of a retail chain.

In  a  recent  article,  Tarapataa  et  al.  (2020)  present  some components  of  a
Distribution  Optimization  System  based  on  data  driven  machine  learning
methods.  The  components  of  the  proposal  are  based  on  algorithms  of
geocoding information  to calculate  the delivery address,  route and regional
distribution optimization and also a smart tracking device monitoring vehicle
traffic  parameters.  The  objective  is  the  cost  optimization  of  resources,
transportation, delivery time and cost. At the time of the article the approach
was in its initial stages. In the last ten years, data driven and machine learning
are  the “new era” methods which are  successfully  used in  many industrial
applications,  and  that  was  the  reason  to  select  this  article.  The  authors
proposed a method, but it is still a project, it is not supported with results, it
needs more work to consider it an alternative to mathematical programming.

The model proposed in this article corresponds to a disjunctive multi  period
model  to  optimize  the  structure  of  the  replenishment  logistics  of  a  retail
company having stores distributed nationwide. Disjunctive programming (DP)
provides  a  systematic  modeling  framework  for  problems  involving  discrete
decisions (Trespalacios and Grossmann, 2012), it is an alternative approach for
algebraic MILP/MINLP models. In the last two decades several problems can be
found, formulated and solved using DP mainly in the area of Process Systems
Engineering and Industrial Engineering. Some of those works published in the
last five years are: Pedrozo et al. (2021) optimizes the design of an ethylene
and propylene production plant, Wu et al. proposed a rolling horizon approach
for scheduling of multiproduct batch plants (2021), Novas et al. (2020) solved
the truck loading problem for a non-alcoholic beverage industry, Rodriguez et
al. (2017) applied DP to a polyurethane foam plant, Castro et al (2021) present
a disjunctive model  to handling preemption in discrete and continuous-time
formulations  of  scheduling  problems.  There  are  also  works  proposing
algorithms,  methods,  techniques,  and  systems  for  DP.  Ignacio  Grossmann
(2002)  presents  a  review  of  nonlinear  mixed-integer  and  disjunctive
programming  techniques  where  an  overview  of  methods  and  techniques
available at that time are raised. More recently, Sawaya and Grossmann (2012)
and Ruiz and Grossmann (2012) present systematic basic steps for linear and
nonlinear  disjunctions,  respectively,  to  sequentially  transform  them  into  a
tighter relaxation of the disjunctive set to solve problems in fewer iterations,
Trespalacios  and Grossmann (2016) propose an algorithm based on cutting
planes for the logic-based outer-approximation (LBOA) method to solve process
synthesis problems. Regarding the codes, LOGMIP (Vecchietti and Grossman,
1999) was the first system to solve linear and non-linear disjunctive problems,
Pyomo.GDP (Chen et al, 2018) is another alternative to formulate and solve a
discrete model formulated via disjunctions.  Nevertheless, even with the active
research in disjunctive programming, no disjunctive models can be found for
the  solution  of  the  replenishment  logistic  of  a  retail  business,  our  model
corresponds  to  a  deterministic  one,  while  those  found in  the literature  use
heuristic  approaches,  or  they  are  solved  by  means  of  a  problem-specific
software.  To emphasize the capabilities of our proposal,  section 3 describes



disjunctions  to  make  discrete  decisions  related  to  changes  in  the  facilities
structure of the distribution network,  including the cost involved in and the
delivery routes employed to deliver merchandise. The objective function is the
cost  minimization  of  the  whole  distribution  operation.  After  presenting  the
model  formulation  in  section  3,  an  example  is  solved  to  show  the  model
capabilities.

2. PROBLEM DESCRIPTION

The problem analyzed in this paper corresponds to merchandise replenishment
to  stores  located  around  a  wide  geographical  region  over  a  time  horizon
divided in periods. Warehouses (WH) receive and concentrate the products that
are  delivered  to  the  stores  according  to  their  needs.  The  replenishment
structure can use cross dockings (XD) to deliver goods.

The structure of the replenishment can change over time, new WH and XD can
be installed at specific locations, existing WH can continue its operation, even
increasing its capacity, or can be closed. Existing cross dockings can continue
their operation or not.

Several assumptions are made in the problem to solve it:

▪ The replenishment volume of products in m3 to be delivered to a store is
known.

▪ Store sales increase over the time horizon in an annual percentage.
▪ Trucks of different sizes are used to deliver merchandise.
▪ Transportation  cost  per  truck  size,  from  warehouses  to  stores  is

calculated based on the distances.
▪ Each store must be visited a minimum number of times over a period

(minv).
▪ Warehouse costs include labor, operation and stock.
▪ Seasonal  overstock of  products  that  exceeds warehouse capacity  can

happen and, for that reason, third-party warehouse spaces are rented for
a short period of time.

▪ Trucks must be filled in a minimum percentage to transport products.
▪ Several delivery routes are defined from storage to the stores, the model

selects one according to the amount to be delivered, the truck size, the
stores to be visited and the stores located in the routes.  In  order  to
understand this assumption, we are presenting Fig.1.



Fig. 1: Routes between stores 1,2,3,4,5,6 and WH. 

The routes express the different existing paths to visit the stores according to
the existing roads. In the illustrative example of Fig.1 there are three different
routes: blue, green and gray. For example, the blue route links stores 1, 2, 3, 4,
and 6 to form a loop that allows the truck to go back and forth to the storage.
By following this route, the truck can visit all the stores or some of them, even
several trucks can use that route visiting different stores, depending on the
amounts to be delivered.

The input data needed is the following:

▪ Store locations (i)
▪ Existing and future locations of WH (r) and XD (k).
▪ The store´s demand at time t (demandit).
▪ The mix of products to be delivered to a store.
▪ The volume of each product in m3.
▪ The delivery cost per truck size in $/km (costkmc).
▪ Labor (laborCost0r, laborincrj) and stock cost (stock0r, stockcost).
▪ Operation cost of WH (opercost0r, operincrj) and XDs (costxdk).
▪ Truck capacities (capc).
▪ WH´s capacities (capWH0r, capWHJj).
▪ Delivery routes.
▪ Distances among WH and stores (distr,i).
▪ Investment costs for capacity expansion in WH (invcostj).
▪ Rental cost of third-party warehouses (costrent).

1

2 3 4

5 6



The decision variables are:
Investment decisions:

▪ The time and cost of installing a WH (Invcostr,t)or a XD TripAmc,k,i,t.
▪ The time and cost of capacity expansion in a WH (CapWHr,t, CapWHupJr,t)
▪ The time and cost of closing WH.

Operation decisions:

▪ Number of trips from WHs (TripAmc,r,i,t), XDs (TripAmc,k,i,t) to the stores and
its cost (CostRIr,I,t, CostKIk,I,t)

▪ Merchandise flows from WHs, XDs to the stores and the delivery route
per time period (FRIr,i,t, FRKr,k,t).

▪ The amount of extra storage space rented (m3) and the cost per year
(Rentr,t).

At the end of the manuscript the reader will be able to find the nomenclature
section  where  the  sets,  parameters  and  variables  used  in  the  model  are
detailed. 

3. PROPOSED MODEL

The  proposed  model  corresponds  to  a  multiperiod  linear  disjunctive  one,
formulated  as  a  Generalized  Disjunctive  Programming  (GDP)  (Raman  and
Grossmann, 1994). The objective function is to minimize the investment and
operation cost of the store´s replenishment and its structure over a total period
of t months.

Discrete decisions involve the operation of new WH or XD facilities. Existing
warehouses  (WH) can  be expanded or  closed.  Existing XD can  continue its
operation or can be closed. Since terms of disjunctions are exclusive or, only
one term at time t  can be true, meaning that in a specific location can be
operating a WH or a XD or nothing. These decisions are posed by Eq. [1].

¿ [XWH r, t ¿ ] [CapWH r,t= capWH0r ¿ ] [OperCostr , t=operCost0r ¿ ] [LaborCostr , t=laborCost0 r ¿ ]¿
¿

¿



The first term of disjunction [1] is handled by Boolean variable  XWHr,t, when
true  a  warehouse  can  be  installed  or  expanded  at  time  t and  operation
(opercostr,t) and labor cost (laborcostr,t) apply. The storage capacity (CapWHr,t)
can be the one at the beginning of period t (capWH0r) or can be increased by
modules of discrete size; when Boolean variable  Zj,r,t is true, the warehouse
capacity is increased capWHJj size and the labor and operation cost are raised
labincrr,j,t and  operincrr,j,t,  respectively.  The  inner  disjunction  handled  by
variable  yrir,i,i´,  expresses that if warehouse  r is used at time  t, and exists a
delivery route between r and store i, then there is a flow of products from r to i
at time  t (FRIr,i,t) which is the summation of the amount of trips (TripAmc,r,i,t)
multiplied by the capacity of the trucks employed (capc).

When XDk,t variable is true a cross docking operates at location k, a fixed cost
(costxXDk ) per volume handled is applied. Inner disjunction is related with the
merchandise flow between WH and XD and between XD and shop i. If there is a
route between  k and  i then  ykik,i  is true, then the merchandise flow  FKIk,i is
calculated by the summation of the amount of trips (TripAmc,k,i,t) multiplied by
the capacity of the trucks (capc). The same for  r  and  k, in this case Boolean
variable ykrr,k must be true. Both flows must be equal according to Eq. [11].

The third term of disjunction [1] with the negation of variables ¬XWHr,t and
¬XDk,t expresses that no WH and XD can be located at r and k respectively
and therefore the costs involved are zero.

Warehouse capacity  at  time  t+1 is  equal  to its  capacity  at  time  t  plus the
increase at time t (Eq. [2]), tN is the last year of the time horizon.

CapWH r,t+1= CapWH r,t+CapWHupJr,t ∀ r∈R , 1≤t≤tN−1                                   [2]

Eq. [3] and Eq. [4] are like Eq. [2] to express the increase in operation and
labor costs because of the capacity expansion for WH r at time t.

OperCostr,t+1 =OperCostr,t+OperupJ r,t ∀ r∈R , 1≤t≤tN−1

[3]

  LaborCostr,t+1 = LaborCost r,t+LaborupJ r,t           ∀ r∈R , 1≤t≤tN−1

[4]

The  cost  of  an  open  warehouse  r at  time  t  corresponds  to  the  labor
(LaborCostr,t) plus the operating cost (OperCostr,t) as shown in Eq. 5.

CostRr , t=LaborCostr , t+OperCost r ,t ∀ r∈R , ∀ t
[5]

The cost of using XD k for store i at time t is equal to the operation cost of the

XD (
CostXDk , t ) times the merchandise flow between them Eq. [6]. 



CostKI k,i, t=CostXD¿¿ k , t ¿¿¿∗FKI k ,i , t ∀ k∈RK , ∀ i∈KI ,∀ t ¿
[6]

Transportation cost (Eq. 7) between WH r and store i is equal to the amount of
trips among them (TripAmc,r,i,t)  times de kilometer cost (costkmc) of truck  c,
according to its capacity, multiplied by the distance between r and i (distr,i).

CostRI r,i ,t=∑
c

costkmc∗TripAmc , r ,i , t∗dist r ,i r∈R , ∀ i∈RI ,∀ t

[7]

The stock of WH r at time t is a percentage (perc) of his full capacity to allow
the merchandise movement inside the facilities (Eq. [8]).

Stock r , t=perc∗CapWH r , t r∈R , ∀ t
[8]

Eq. [9] shows the merchandise flow balance in the WH plus its stock, at time
t=t1. Initial stock at WH r  (stock0r) plus the input flow  Flowr,t is  equal to the
summation of output flows to shop i (FRIr,i,t) plus the summation of output flows
to XD  k (FRIr,k,t) plus the remaining stock at time  t (Stockr,t) and extra space
rented to third-party at time t (Rentr,t), for initial time t1.

stock 0r+ flowr , t = Stockr , t + Rentr , t+ ∑
i∈RI

FRI r, i ,t + ∑
k∈RK

FRK r ,k , t ∀ r∈R , t=t1

[9]

Eq. [10] establishes that the stock at time t-1 of WH r (Stockr, t-1) plus the input
flow  Flowr,t at  time  t  is  equal  to  the summation of  output  flows to stores i
(FRIr,i,t) plus the summation of output flows to XD k (FRIr,k,t) plus the remaining
stock at time t (Stockr,t) and extra space rented to third-party at time t (Rentr,t),

∀ t≥t 2 .

Stock r , t−1+ flowr , t = Stockr , t + Rentr , t+ ∑
i∈RI

FRI r , i , t + ∑
k∈RK

FRKr , k , t ∀ r∈R , ∀ t≥t2

[10]

For XD k, the summation of input flow (FRKr,k,t) is equal to the summation of the
output (FRIr,i,t) Eq. [11].

∑
r

FRK r , k , t=∑
i

FKI k , i , t ∀ k∈K ,∀ t

[11]

The  summation  of  flows  to  store  i from WH  r and  XD  k  should  cover  the
demand of store i at time t if a route exists from WH r to XD k, and from k to
store i  (Eq. [12]).  The demand (demandi,t)  can be covered from deposit  r if
there exists  a route  that  passes  through shop  i  or  ends at  that  point.  The
variable y of Eq. 12 represents that decision in the model.



∑
r∈RI ¿

¿ i ´∈RXX ¿+ ∑
k∈KI

ykik , i) ∀ i ,∀ t ¿

[12]

A transformation is needed for the hierarchical decisions of disjunction [1] such
that the problem is posed as a GDP formulation. Inner disjunctions must be
taken out as a single  one and several logical  constraints must be added to
relate  the  variables  handling  the  disjunction´s  terms  (Vecchietti  and
Grossmann,  2000).  These  transformations  are  presented  in  the  following
paragraphs.

Disjunction [13] corresponds to the decision of installing or not a WH and a XD.
Cost constraints apply for each case.

Disjunction [14] represents the capacity expansion of a WH and also the rise in
labor  and  operation  cost.  Since  disjunction  is  now  independent  of  the
hierarchical decision, a negative term (¬Zr,j,t )is added for the case where an
existing WH is not expanded or is closed; in this case the increase in capacity
and costs are zero.

¿   ¿ [Zr , j , t ¿ ] [CapWHupJ r,t=capWHJ j¿ ] [LaborupJ r , t=labincrr , j , t ¿ ] ¿
¿

¿

[14]

Like  Eq.  [14],  disjunction  [15]  is  extracted  and a  negative term (¬yr,j,i´ )  is
added to consider the case where an existing  WH is closed and therefore the
merchandise flow between WH and stores is zero.

¿   ¿ [ yrir ,i , i ´ ¿ ] ¿
¿

¿

[15]

¿ [XWH r, t ¿ ] [CapWH r,t = CapWH 0r ¿ ] [OperCostr , t=operCost 0r ¿ ] [LaborCost r , t=laborCost 0r ¿ ]¿
¿

¿



Disjunctions [16] and [17] are transformed likewise than [14] and [15] for the
case where a cross docking is not operated at that location. For this case, input
and output flows from XD k are zero.

¿   ¿ [ ykik , i ¿ ] ¿
¿

¿
                         

[16]

¿   ¿ [ yrkr , k ¿ ]¿
¿

¿

[17]

According to Eq. [18] a WH or a XD can operate at the same location, or none
of them.

XWH r , t+XDk , t≤1 ∀ r∈R ,∀k∈RK ,∀ t
[18]

Eq. [19] represents  whether a WH can have a capacity expansion  j over the
time horizon.

∑
j

Zr , j ,t≤XWH r , t ∀ r∈R ,∀ t

[19]

Eq. [20] establishes that a delivery route can exist (or not) between WH r and
store i over the time horizon.

∑
i ´

yrir , i ,i ´≤XWH r , t ∀ r∈R ,∀ i∈RI , ∀ t

[20]

Eq. [21] expresses  that a delivery route  can  exist (or not) between XD k and
store i over the time horizon. Similar for Eq. [22] for paths between WH r and
XD k.

∑
i

ykik , i≤XDk ,t   ∀ k∈K ,∀ t

[21]

∑
r

yrk r , k≤XDk ,t     ∀ k∈K ,∀ t

[22]

Eq. [23] states that the route must have a store at the end of it such that its 
distance is greater than the previous points.



distr , i∗yrir , i , i ´ ≥ distr , i ´ ∗yrir , i ', i ∀(r ,i ,i ´ )∈Rxx ,∀(r ,i , i ´ )∈RI
[23]

Eq. [24] establishes that every store must be visited a minimum number of 
times (minv) per period.

∑
c , r∈RI

TripAmc , r ,i , t+ ∑
c , k∈KI

TripAmc , k , i , t≥minv ∀ i , ∀ t

[24]

OBJECTIVE FUNCTION

The objective function is the cost minimization of the whole logistic operation 
(Eq.25), which includes the total operation and investment costs. Since the 
model is a multiperiod one the cost is actualized with an annual interest rate 
(Tax). 

TotalCost=∑
r , t

❑

❑
InvCost r ,t

¿¿

Eq. 26 determines the annual operational cost that includes operating, labor,
stock, transportation, and rental.

Costt
❑
= ∑
r ,t ∈ year

❑

❑(CostRr ,t
❑

+stockcost .Stock r , t )+ ∑
r ,i ,t ∈ year

❑

❑CostRIr ,i ,t+ ∑
k ,i , t∈ year

❑

❑CostKIk , i ,t+ ∑
r ,t∈ year

❑

❑costrent .Rent r , t [26]

4. CASE STUDY



The case study corresponds to a real case of an electronic and appliance sale
company  having 121  shops located around a large geographical region. The
structure to supply the stores (Fig. 2) is the following: three warehouses, a big
central  one  (WH1),  located  near  a  port  where  many  of  the  products  are
imported, and two more (WH2 and WH3), smaller in size, located in specific
regions which provide goods to the stores close to them.  In Addition, a cross
docking (XD1) managed by a third-party is used to satisfy another store set. It
is  important  to  note  that,  in  this  structure,  95%  of  the  input  flow  of
merchandise is  collected in WH1, only 5% is sent to the smaller WHs.  This

means that WH1 delivers merchandise to the other WHs, XD1 and some sale
stores. 

Fig. 2: Current structure of warehouses, cross docking and stores of the Case
Study

The  objective  of  the  study  is  to  analyze  the  delivery  cost  of  replenishing
merchandise from WHs to the stores over a period of 10 years.  The company
seeks to analyze the possibility of closing WH2 and WH3 or replacing them by
XDs  operated  by  third-parties,  or  the  option  to  increase  their  capacities,
including WH1. Stores are located between a few kilometers to several hundred
kilometers from WH1 which centralizes and distributes the merchandise.

The stores are clustered in four regions according to their locations: North-East,
North-West, Central and South. With  these definitions, North-West stores are
supplied by WH2, North-East´s by WH3 and XD1, while WH1 delivers products



to Central and South retailers and to XD1, WH2 and WH3. Between two points
of the structure there exists several paths, but only one of them can be chosen
according  to  the  delivery  to  be  made.  The  cluster’s  definition  reduces  the
combinatorial path  selection.  Besides,  this  assumption  is  supported  by  the
highways/routes connecting different places.  The model also decides the truck
type to perform the delivery, where several sizes are available according to the
route and the amount to deliver.

The demand projection over the years is proposed by the company taking into
account  the  historical  sale  values  of  previous  years.  The  analysis  of  those
values shows that there are seasonal demands according to  holidays, special
dates (Christmas time for example) and sale promotions during specific times
of a calendar year (Black Friday, Cyber Monday). This also has an impact on the
delivery and the capacity requirements of the WHs,  sometimes extra storage
space is rented to third parties to keep the necessary stock. Fig. 3 shows the
volumetric demand corresponding to a calendar year from august 2018 until
July 2019. Merchandise  purchases are made in advance so that the need for
extra space to maintain stock can be programmed beforehand. This situation is
contemplated in the model.

Fig. 3: Volumetric demand and stock data in a operation year (m3)

5. RESULTS

To solve the model,  the disjunction´s terms are relaxed by means of Big-M
formulations  (Vecchietti  et  al.,  2003).  The  transformed  model  is  a  mixed-
integer  linear  programming  problem  (MILP)  which  was  posed  in  the  GAMS
system  (Brooke  et  al.,  1998)  and  solved  with  CPLEX  12.6.3  in  a  personal
computer with an  Intel i7 processor with 8 GB of RAM. The model consists of
472522 equations, 429885 variables, and 82880 binary variables (0-1). It took
497 CPU seconds to reach the solution. 



To analyze the  quality  of  the solution,  a  comparison  is  made between the
optimal  results  obtained  with  the  model  and  a  simulation  of  the  current
situation of the company. 

Fig. 4 shows the structure of the delivery logistic proposed by the model, where
it can be seen that WH2 is replaced by a third-party cross docking terminal and
WH3 is closed. The distribution made by WH3 is absorbed by XD1 and WH1.
The purchased merchandise is stored only in WH1 and then distributed to the
rest of the facilities. The solution proposes two capacity extensions for WH1.
The  expansions  are  formulated  in  a  discrete  manner  in  modules  of  6.000,
12.000 or  18.000 m3.  The model  decided  two expansions  of  the  minimum
module (6.000 m3 each one), one at the beginning of the horizon time (2019)
and the  other,  five  years  later  (2024),  with  a  total  cost  of  $  1.280.000,00
($640.000 each one). The investment cost in expansions is low compared with
transportation or warehouse operation costs. The first expansion is decided to
absorb the volume of  the closed warehouses,  the next one to diminish the
storage capacity rented to third-parties.

Fig. 4: Structure proposed by the model optimal solution of the Case Study

A summary of the results is presented in Fig. 5. The optimal solution obtained
with the model is compared with the current situation, which was simulated in
order to compare the values.  The figure shows different components of the



total cost to facilitate the results analysis. The first bar in Fig.3 corresponds to
WHs costs, which includes labor, the operating costs such as electricity, water,
cleaning, security, facilities maintenance. The closure of WH2 and WH3 allows
an important saving related to operational cost. The next item is the rental of
third-parties deposits on a seasonal basis, at peak times in the stock. In the
optimal solution that cost is increased significantly with respect to the current
situation, this is mainly due to the decrease in storage capacity because of the
closure of WH2 and WH3. 

Transportation  is  the  third  item  to  compare;  this  item  corresponds  to  the
merchandise delivery from the warehouse to the shops, a significant increase
because the contract with the new XD includes the transportation cost which is
higher  than  using  independent  companies.  Due  to  the  closure  of  two
warehouses,  all the  merchandise  purchased  is  stored  in  WH1  and  then
distributed from it, also new points are supplied from WH1. 

The fourth item is cross docking cost which is based on the volume handled
and includes the physical use of space. This is a bit higher with respect to the
simulation; the volume handled by the new facility (XD2) is not important and
its cost is lower than XD1 because of its geographical location. The stock cost is
similar to the current situation since its volume does not change significantly. 

Finally,  the figure compares the total  cost showing a lower value  than with
respect to the simulation of the current situation.

Fig. 5: Cost comparison – Model Optimal Solution vs. current situation.

The cost values  presented in Fig.  5 are broken down in Table 1 and Table 2
showing the evolution in dollars.  The last row shows the estimated cost per
cubic  meter,  which  decreases over  the  years  because  a  greater  volume is
moved having almost the same structure. It also shows a lower value of the
optimal solution of the model.

In table 1, a gradual growth of the annual cost can be observed, the same
occurs for all the items considered except in the costs of deposits which remain



at the same value, since no capacity extensions are made, neither in labor nor
services. The demand grows annually according to the estimation provided by
the company, the volume of merchandise grows, making the relative cost per
cubic meter decreasing over the time horizon, in both scenarios. Also because
of  the  increasing  demand,  the  volume  rented  to  third-party  warehouses
increases over the years. 

Similar behavior showing in Table 1 occurs for the optimal solution scenario in
Table 2. While transportation and cross docking cost increases with respect to
the  current  situation,  the  operational  cost  of  warehouses  is  much  lower
compensating the rises. Stock cost remains similar. On the other hand, the cost
of warehouses gradually increases because of the hiring of personnel due to
the growth of the volume handled at WH1.

Tabla 1: Current situation simulation cost (u$s)

Tabla 2: Optimal solution costs (u$s).

6. CONCLUSIONS

This article presents a disjunctive programming model to decide the optimal
facilities and delivery routes to replenish merchandise to the shops of a retail
company.  Discrete  decisions are  modeled  using  disjunctions to  decide  if  a
warehouse  will be installed,  closed,  or increase the capacity; or  a new cross
docking is necessary. The model corresponds to a strategic one, applied over a
horizon  time  of  ten  years.  Several  costs  are  considered  in  the  objective
function: investment,  operational,  transportation,  stock,  and rental  costs.  To
analyze the capabilities of the proposal, the model is applied to a case study
corresponding to an electronic and appliances retail  company having stores
distributed over a wide geographical region. 

The proposed model is a valuable analysis tool to study delivery structures for
several  businesses,  not  only  retail.  Several  scenarios  can  be  analyzed  by
varying  the  parameters  and  conditions  of  the  delivery  structure.  Business



managers  can  use  it  to  make  decisions  to  improve  competitiveness  by
diminishing logistic operation cost for companies where it entails an important
portion of the total operation. This model provides a systemic way to study the
distribution problem of  a company and,  with some adaptations,  it  could be
transformed  into  an  operational  model  to  supply  merchandise  over  stores
located in different locations.

The results of the case study show that a saving of around 30% of the total
distribution cost is possible to obtain by closing one WH and replacing the other
by a third-party cross docking. Delivery routes are automatically  selected by
the model because of the new delivery structure. Savings are mainly obtained
in labor and operational costs of warehouses; stock costs remain similar while
transportation  costs increase because of  the use of cross dockings and the
selection of delivery routes.

NOMENCLATURE

SETS
c: trucks
i: stores/shops
j: interval of capacity increase 
k: cross dockings locations
r: warehouses locations
t: time periods

PARAMETERS
capc: capacity of truck c
capWH0r: initial capacity of warehouse r
capWHJj: capacity increase of interval j
costkmc: cost per kilometer of truck c
costrent: rental average cost of third-party warehouse space
costxdk: cross-docking cost per volume handled of XD k
demandi,t: merchandise volume (in m3) to deliver to store i at time t
distr,i: distance in km between warehouse r and shop i
flowr,t: merchandise purchased and received at warehouse r at time t (m3)
invcostj: investment cost of interval j to increase capacity to a warehouse ($)
laborCost0r: initial labor cost of warehouse r ($)
laborincrr: labor cost increase of interval j ($)
minv: minimum number of trips to deliver goods to store i
operCost0r: initial operation cost of warehouse r ($)
operincrj: operation cost increase of interval j ($)
perc: maximum percentage of full warehouse capacity to store goods
stock0r: initial stock of warehouse r (m3)
stockcost: average financial cost ($/m3)
tax: interest rate

VARIABLES



Boolean 
XWHr,t:when true wearhouse r is operating at time t otherwise not
XDk,t: when true cross-docking k is operating at time t instead of warehouse r 
otherwise not
Zr,j,t: when true a capacity of size j is done for warehouse r at time t otherwise 
not
yrir,i: when true a merchandise delivery is performed from warehouse r to store 
i at time t otherwise not
ykik,i: when true a merchandise delivery is performed from XD k to store i at 
time t otherwise not
yrkr,k: when true a merchandise delivery is performed from warehouse r to XD k
at time t otherwise not

Continuous 
CapWHr,t:: capacity in m3 of warehouse r at time t
OperCostr,t: operational cost of warehouse r at time t
LaborCostr,t: labor cost of warehouse r at time t
CapWHupJr,t: capacity increase of warehouse r at time t
OperupJr,t: operation cost increase of warehouse r at time t
LaborupJr,t: labor cost increase of warehouse r at time t
CostRr,t: operational cost of warehouse r at time t (includes labor and 
operation)
CostKIk,I,t: transportation cost from cross-docking k to shop i at time t
CostRIr,I,t: transportation cost from warehouse r to shop i at time t
CostXDk: cross-docking cost k per volume handled ($/m3)
FKIk,I,t: volume delivered (m3) from XD k to shop i at time t
FRIr,i,t: volume delivered (m3) from warehouse R to shop i at time t
FRKr,k,t: volume delivered (m3) from warehouse R to XD k  at time t
Rentr,t: space rented (m3) to a third-party warehouse
Stockr,t: stock (m3) of warehouse r at time t

Integer 
TripAmc,k,i,t: number of trips of truck c from XD k to shop at time t
TripAmc,r,i,t: number of trips of truck c from warehouse r to shop i at time t
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