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Abstract. We present an evolutionary algorithm to solve a combination of the
Order Batching and Order Picking problems. This integrated problem consists of
selecting and picking up batches of various items requested by customers from
a storage area, given a deadline for finishing each order according to a delivery
plan. We seek to find the plan that minimizes the total cost of picking the goods,
proportional to the time devoted to traverse the storage facility, grabbing the good
and leaving it at the dispatch area. Earliness and tardiness induce inefficiency costs
due to the excess use of space or breaching the delivery contracts. The results of
running the algorithm compare favorably to those reported in the literature.
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1 Introduction

A critical factor in the operational performance of the internal and external logistics of
a firm involves the optimization of processes in distribution centers. Moving the items
inside those centers, receiving, locating, selecting and collecting them are some of those
processes [1, 2]. The selection and collection of items are the main activities carried
out in storage facilities. They amount to picking up the right number of items requested
by the customers and then taking them to the area in which orders are prepared [3].
The goods are classified, regrouping the units in each batch to prepare the individual
orders [4, 5]. Most cases involve also marking, labelling and boxing up the goods into
indivisible parcels. The process finishes once each of those parcels are checked out,
loaded on the delivery trucks and finished the necessary documents. In this paper we
focus on the optimization of the selection and collection of requested items.
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2 Problem Description and Literature Review

We can distinguish three problems concerning the operations in storage facilities. The
first one is the allocation of goods to different storage positions. The second involves the
grouping of items in batches for their collection. The third problem is that of scheduling
the sequence of pick-ups of goods and taking them to the dispatch area [6–8]. In this
paper we focus on the integrated treatment of the second and third problems, critical
for the efficiency of operations since they generate most of the costs of the operations
on the floor of the storage facility, being intensive in the use of manpower [9, 10]. This
combined problem starts with the arrival of the orders from different customers, detailing
the amounts, specifications and availability dates at the merchandise dispatch area. The
whole procedure is optimized by choosing the plan that minimizes the operational costs
of the operations leading to satisfy the requests in due time of the batches, consisting of
different goods for disparate customers [11–13].Delays in complyingwith the plan create
costs of breaching the contracts with customers. On the other hand, an early finishing
of the plan creates costs of crowding the dispatch area, blocking flows of activity and
increasing processing times for new orders [11]. Formally, the problem integrates the
Order Batching Problem (OBP) and the Order Picking Problem (OPP) [14–16]. OBP
consists in finding the amount and size of the batches of items, readying them for the
pick-up team [13]. This requires to take into account the capacity of the team and the
time at which each item must be available for finishing at the delivery area [17–19].
OPP consists in identifying optimal navigation plans around the sites where the items
are stored [20–22]. From now on we denote this integrated problem as OBP+OPP.

A thorough review of the literature onOBP andOPP can be found in [2], while [1, 21,
23] review the heuristics for solving OPP. [8] presents two ways of solving OPP, using
Ant Colony Optimization and Iterated Local Search. Other meta-heuristics applied to
related routing problems can be found in [15]. [4] uses a clustering approach to solveOBP
taking into account demand patterns instead of the distances covered by each sequence of
visits. Other heuristics for OBP can be found in [7]. An integer programming approach
to OBP is presented in [13] were the visit sequences are estimated and the problem is
solvedwith a heuristic based on fuzzy logic. In turn [11] uses amultiple genetic algorithm
for OBP+OPP. This latter contribution uses flexible time windows for the delivery time
of each order. We adopt this methodology, but using an evolutionary algorithm with
a specific chromosome covering different batches. This algorithm yields results that
improve over those obtained at the instances and lay-out of [11].

3 Formulation of the Problem

LetP = {1, . . . , nIt} be the set of items, where nIt is the amount of different goods. Each
item has a unit weight, defining a corresponding class W = {

w1, . . . ,wp, . . . ,wnIt
}
.

Each customer i makes a single request, involving a list of items Pi. Then, the num-
ber of customers is the same as the number of requests, nReq, being the set of cus-
tomers I = {1, . . . , i, . . . , nC}. Each request has a finishing time, defining a class
T = {

t1, . . . , ti, . . . , tnReq
}
. Let L = {

�0, �1, . . . , �p, . . . , �nIt
}
be the positions on

the floor of the store, where �0 is the dispatch area while the others correspond to the
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placements of the different items. So, for an item p ∈ P , its position �p = (
xp, yp

)

corresponds to its coordinates in the floor. Given a pair of positions �p and �p′ , if there
is an open direct path between them, we define a distance Dlp,lp′ . We denote with Pr the
class of items in a batch r (the goods in Pr may or not correspond to the requests of a
single customer). R = {1, .., r, . . . , |R|} is the class of total batches to be picked-up.
Sr = s1, . . . , su, . . . s|Sr | is the sequence of positions to be visited to complete batch
r, where su is the u-th position to be visited and |Sr| is the amount of different items
in batch r. qi,p ∈ Q denotes the total number of units of item p requested by customer
i. Then Qi = ∑

p∈Pi
qi,p is the total number of units in the request of customer i and

Qp = ∑
i∈I qi,p the total number of units requested of item p. Analogously, we define

Qr to be the total number of units in batch r. K = {1, . . . , |K|} denotes the class of
pick-up teams. Each team as a maximum carrying capacity Cap. Then, the integrated
problem OBP+OPP is defined on an undirected graph G = (V,A), where V are nodes
denoting the storage positions of the items in P , plus two copies of the initial node (the
position of the dispatch area). In turn,A represents all the feasible direct paths between
nodes in V . Each such edge (h, l) ∈ A has an associated time thl defined as the length
of the distance between positions h and l divided by the speed of the pick-up team v
(i.e. thl = Dh,l/v). Each edge has also an associated monetary cost per time unit ς . tpick
is the mean time to pick any item once reached its corresponding position. A Boolean
variable xhlkr is 1 if and only if item h is picked up right before item l by the picking
team k in the sequence for batch r, where h, l ∈ V , k ∈ K and r ∈ R. Another Boolean
variable is yhkr = 1 if and only if the pick-up team k grabs item h for batch r, where
h ∈ V , k ∈ K and r ∈ R. Then the formal presentation of OBP+OPP is as follows [3,
11]:1

minCTotal :

⎡

⎢⎢⎢⎢⎢⎢
⎣

∑
h∈V

∑
l∈V Dh,l · ∑

k∈K
∑

r∈R xhlkr
v

+
∑

p ∈ P

q ∈ Q

qp · tpick

⎤

⎥⎥⎥⎥⎥⎥
⎦

· ς +
∑

i∈I
(α · Ei + β · Ti)

(1)

s.t.:
∑

p∈Pr

(
qp · wp

) · ypkr ≤ Cap, ∀k ∈ K, r ∈ R (2)

∑

r∈R yhkr = 1, ∀h ∈ P,∀k ∈ K (3)

∑

k∈K yhkr = |K|,∀h ∈ {0, n + 1}, r ∈ R (4)

∑

h∈V xhlkr = ylkr,∀l ∈ V\{0}, k ∈ K, r ∈ R (5)

∑

l∈V xhlkr = yhkr,∀h ∈ V\{n + 1}, k ∈ K, r ∈ R (6)

1 We denote with {0, n + 1} the start and end at the dispatch area.
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∑

i∈I
∑

k∈K
∑

r∈R qi,p · ypkr = Qp,∀p ∈ P (7)

∑

p∈P
∑

k∈K
∑

r∈R qi,p · ypkr = Qi,∀i ∈ I (8)

xhlkr ∈ {0, 1},∀h, l ∈ V, k ∈ K, r ∈ R (9)

yhkr ∈ {0, 1},∀h ∈ V, k ∈ K, r ∈ R (10)

The goal (1) is theminimization of the total money cost of the time spent in collecting
the batches plus a penalty for failing to meet the agreed-on deadlines for finishing the
requests. The first term represents the cost of the time devoted to picking up the goods
and taking them to the dispatch area. A penalization to earliness or tardiness in getting
the items in time to the dispatch area is defined as follows. α is the earliness penalty per
unit time while β is the corresponding unit time fine for tardiness. Ei is the time length of
earliness in the fulfillment of the request of customer i and Ti corresponds to tardiness:
Ei = max{0, ti − ci} and Ti = max{0, ci − ti}, where ci is the actual finishing time of
the request of i (i.e. the time at which all the items in the request are finally prepared in
the dispatch area). The list of constraints (2) indicates that the total weight carried by
a team cannot exceed its capacity. The restrictions in (3) mean that no storage position
should be visited more than once for the preparation of a given batch. (4) ensures that
all pick-up teams start and end at the dispatch area. Restrictions (5) and (6) preserve
the orderly sequence of pick-ups. (7) means that the requested amounts of each item p
are picked-up. Analogously, (8) indicates that the amounts requested by customer i are
picked-up. Finally, (9) and (10) indicate that variables xhlkr and yhkr are Boolean.

4 Solution Method

The problem presented in the previous section belongs to the NP-Hard complexity class.
This means that, in practice, it can be solved analytically only in very small instances.
Therefore, to find solutions in polynomial time we need to use heuristic methods. We
propose here an evolutionary algorithm based on the usual integer representation used
to solve combinatorial problems. In this representation we consider a chromosome con-
sisting of two genomes. We can see how this works in a very simple instance, in which
we codify the solution for three requests of four items. Table 1 shows that request 1
involves 3 units (one unit of item A and two units of C); request 2 asks for one unit of A,
one of B, two of C and one of D while request 3 demands two units of B and two of D.

To codify this we consider two rows, one for items (identifying to which requests
they belong) and another indicating cumulative amounts (Table 2).

A chromosome with two genomes captures the codification in Table 2 (see Table 3).
Chromosome: {[G1] [G2]}
Genomes:
[G1]: Sequence in which items will be picked up.
[G2]: Amount of items picked up in [G1] for each batch.
Number of entries:
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Table 1. Example for OBP + OPP.

Request Items Total

A B C D

1 1 0 2 0 3

2 1 1 2 1 5

3 0 2 0 2 4

Total
amounts

2 3 4 3 12

Table 2. Codification.

Items (corresponding request)

A(1) A(2) B(2) B(3) B(3) C(1) C(1) C(2) C(2) D(2) D(3) D(3)

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
1 2 3 4 5 6 7 8 9 10 11 12

Table 3. Chromosome = Genome 1 + Genome 2

Cumulative
pick ups →

1 2 3 4 5 6 7 8 9 10 11 12

Genome 1

[G1] → 6 7 9 10 11 1 3 2 12 4 8 5

batch 1 batch 2 batch 3

Genome 2

[G2] → 5 7 12 – – – – – – – – –

[G1]: Total number of requested items
∑

i∈I Qi.
[G2]: Total number of requested items

∑
i∈I Qi (non-null entries correspond to

batches).
The sequence in which items of each batch are picked up is the following. Batch 1:

{6→ 7→9→ 10→ 11}, Batch 2: {1→ 3} and Batch 3: {2→ 12→ 4→8→ 5}. This
means that, for instance for Batch 2, that the pick-up team has to go to the first position
on Table 2 (A(1)) and then to third position (B(2)) to finally take to the dispatch area the
two picked up units of items A and B. Figure 1 shows the navigation path of the three
pick-up teams.

This visual representation ensures to warrant the satisfaction of constraints (2)–(8).
In the initial stage of the algorithm a population is generated at random. The procedure
iterates, by selecting the fittest individuals, the winners in repeated tournaments among k
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Items A Items B

Items C

Dispatch area

Request 1 Request 2 Request 3

A(1) A(2) B(2) B(3) B(3)

C(2) C(2)

C(1) C(1)

D(2) D(3) D(3)

Storage area

1 2 3

Items D

Pick-up teams

Fig. 1. Navigation paths of the pick-up teams

individuals chosen at random from the current population [24]. Then, the edge recombi-
nation Operator [25] and the mutation of insertion operator [26] are applied on Genome
1. Genome 2 is completed according to the capacity of pick-up teams. A cost criterion
caps the number of iterations. Figure 2 presents the pseudo-code of the algorithm.

5 Computational Experiment

In order to evaluate the quality of the solutions and the performance of the algorithm we
run it on the instances presented in [11]: a medium size instance (DS1/M1), a large one
(DS2/M1) and a very large instance (DS3/M1) (Table 4).

We assume that the number of units of an item p requested by a customer i follows a
uniform distribution between 1 and 10, i.e. qi,p ∼ U (1, . . . , 10).The number of different
items requested by a customer i is assumed to obey to a normal distribution with mean
10 and standard deviation 5, that is |Pi| ∼ N (10, 5). The finishing time of a request
of customer i, follows a uniform distribution, on discrete periods of time measured in
seconds between 10:00 am and 06:00 pm, that is, ti ∼ U (36000, . . . , 64800). The unit
weight of each item p, obeys also to a uniform distribution ranging between 8 and 24 kg.,
i.e. wp ∼ U (8, . . . , 24). With respect to the pick-up teams we assume that their average
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1: Load Input % information of requests, lay-out and parameters of the algorithm. 
2: nLot ← nLotMin 
3: while nLot < nLotMax 
4:  t ← 0;  
5:  P(t) ← InitPop(Entrada); 
6:  FitP(t) ← EvalPop(P(t)); 
7:  For t ← 1 a MaxNumGen 
8:   Q(t) ← SelecBreeders (P(t), FitP(t)); 
9:   Q(t) ← Crossover(Q(t)); 
10:   Q(t) ← Mutation(Q(t)); 
11:   FitQ(t) ← EvalPop(Q(t)); 
12:   P(t) ← SelSurviv(P(t), Q(t), FitP(t), FitQ(t)); 
13:   FitP(t) ← EvalPop(P(t)); 
14:   if TermCond(P(t), FitP(t)) 
15:    break; 
16:  end 
17:  end 
18: nLot ← nLot +1; 
18: end

Fig. 2. Pseudo-code of the algorithm

Table 4. Features of the instances [11]

DS1/M1 DS2/M1 DS3/M1

Number of requests 40 80 200

Number of different items 80 160 300

Total average weight (kg.) 13.704 37.152 158.784

Capacity of pick-up teams (kg.) 10.000 10.000 20.000

speed is v = 2m/s, will the mean grabbing time of items is tpick = 15 s while the cost
of displacement per unit of time is ς = $0, 05 with Cap depending on the instance.
For the penalty fees we consider α = $ 0.5 and β = $1. We adopt also the strategy
of bounding the search space presented in [11] as to compare our results with those
reported in that article. This amounts to define lower and upper bounds on the number of

batches: |R|min ≤ |R| ≤ |R|max. These bounds are |R|min =
(
ϕ1 · ∑

p∈P wp

)
/Cap y

|R|max =
(
ϕ2 · ∑

p∈P wp

)
/Cap where ϕ1 and ϕ2 are such that ϕ2 ≥ ϕ1. The number of

iterations is capped at 500, the size of the population is 150, the number of participants
in the tournament is 2, while ϕ1 = 2 and ϕ2 = 4, with a crossover probability of
0.9, a mutation probability of 0.15, and a 5% of the population in the elite. We ran the
experiment on a PC with an Intel Core i7 3.00 GHz processor and a RAM of 8 GB.
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6 Results

Wecompare the results of running the algorithmon the three instancesDS1/M1,DS2/M1
and DS3/M1 to those obtained in [11] (Table 5, DTotal: total distance in meters; nBatch:
optimal number of batches;DAverage: average distance in meters;Dσ : standard deviation
in meters; Tfail: tardiness and earliness in seconds; CTotal: total cost in $; TCPU average:
running time in seconds). We ran each instance 30 times.

Table 5. Results

Results from [11] Evolutionary algorithm

DS1/M1 DS2/M1 DS3/M1 DS1/M1 DS2/M1 DS3/M1

DTotal 1304.00 3569.00 16945.00 1266.00 3215.00 14548.00

nBatch 8.00 11.00 27.00 8.00 12.00 27.00

DAverage 163.00 324.46 627.59 158.25 267.91 538.81

Dσ 3.70 25.17 18.69 2.90 23.41 21.75

Tfail 1181.00 4704.00 15481.00 1158.70 4801.91 15621.31

CTotal 1092.60 3104.83 9207.13 1090.78 2961.89 8898.01

TCPUaverage 753.60 2629.90 5785.50 605.70 2121.90 4474.20

We can see that DTotal improves with our algorithm in all three instances (DS1/M1,
DS2/M1 and DS3/M1, 2.91%, 9.92% and 14.15%, respectively). On instances DS1/M1
andDS3/M1, nBatch was the same as in [11], while for DS2/M1 it was larger. For instance
DS1/M1, Tfail improves 1.89%, while on DS2/M1 and DS3/M1 it worsens 2.08% and
0.91% respectively. Finally, TCPU average was lower in all instances. Figure 3 depicts the
percentages of improvement or worsening with respect to the results in [11].

7 Conclusions

We presented an evolutionary algorithm to solve in an integrated way a combination of
the Order Batching and the Order Picking problems. The algorithm operates on a novel
way of representing the chromosome with two genomes, allowing incorporating directly
specific knowledge of the problem, yielding amore flexible treatment of the search space
while at the same time providing an explicit representation of the constraints. We ran
the algorithm on simulated instances of different sizes. We found that the algorithm
improved in general the results presented in [11]. Future work involves addressing the
problem in a cross-dock platform and under a multi-objective perspective.
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Fig. 3. Percentage of improvements over the results in [11].
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