Supernovas con dos máximos en la curva de luz bolométrica

M. Orellana^{1,2}, M.C. Bersten^{3,4}

¹Universidad Nacional de Río Negro. Sede Andina

² Consejo Nacional de Investigaciones Científicas y Tećnicas (CONICET), Argentina

³ Instituto de Astrofísica La Plata (CONICET-UNLP)

⁴ Facultad de Ciencias Astronómicas y Geofísicas, UNLP

64ª Reunión Anual de la Asociación Argentina de Astronomía

19-23 Septiembre 2022

(ロ)(u)(u)(u)(u)(u)(u)(u)(u)(u)(u)(u)(u)(u)(u)(u)

2-peaked published data

The observed morphology in both peaks is quite diverse which may indicate different physical origins.

These events are nowadays discovered more frequently.

	Name	Туре	Reference	
V	SN1993J	llb	Ray et al. (1993)	
⊳	SN1999ex	lb/c	Stritzinger et al. (2002)	
\triangleleft	SN2005bf	lb/c	Folatelli et al. (2006)	
•	SN2006oz	SLSN I	Leloudas et al. (2012)	
•	SN2008D	lb	Modjaz et al. (2009)	
			Bersten et al. (2013)	
			Tanaka et al. (2009c)	
٠	PTF11mnb	lc	Taddia et al. (2018)	
۸	PTF12dam	SLSN I	Vreeswijk et al. (2017)	
•	LSQ13abf	lb	Stritzinger et al. (2020)	
•	iPTF13dcc	SLSN I	Vreeswijk et al. (2017)	
•	LSQ14bdq	SLSN IC	Nicholl et al. (2015b)	
X	DES14X3taz	SLSN I	Smith et al. (2016)	
X	iPTF14gqr	lc	De et al. (2018b)	
M	iPTF15dtg	lc	Taddia et al. (2016)	
н	SN2019cad	lc	Gutiérrez et al. (2021)	
0	SN2019dge	lb	Yao et al. (2020)	
۰.	SN2019ehk	lb	Jacobson-Galán et al. (2020, 2021)	
		llb	De et al. (2021)	
•	SN2019stc	SLSN I	Gomez et al. (2021)	
-	SN2020bvc	Ic-BL	Ho et al. (2020)	
п	SN2020faa	SLSNII	Yang et al. (2021)	
π	SN2021gno		Jacobson-Galán et al. (2022)	
			Ertini et al. (2022)	
	< □ ▶	< @ >	 ▲ ■ ▶ ▲ ■ ▶ ■ • • • • • • • • 	

A family of observed SNe

These have an initial rising phase. Reasonably well-covered photometry prior to the first peak.

Original studies in this context:

- Folatelli, G., Contreras, C., et al. 2006, ApJ, 641, 1039
- Taddia, F., Sollerman, J., et al. 2018, A&A, 609, A106
- Gutiérrez, C. P., Bersten, M. C., Orellana, M., et al. 2021, MNRAS, 504, 4907

In this study:

Models are re-investigated within a uniform prescription for the ⁵⁶Ni-profile.

We explore the potential of the model.

▲□▶▲□▶▲≡▶▲≡▶ ● □ ● ● ●

Justification: outer ⁵⁶Ni

X_{out}

= 990

The presence of **outflows** involved in the explosion may induce nucleosynthesis of radioactive elements somewhere at the outer layers of the ejecta before the shock front of the SN arrives.

Sketch of Jet Head and Internal Shock in the Choked Jet

A jet choked inside the star? (inspired by Duffell & Ho, 2020)

A GRB viewed off-axis? (argued for SN2020bvc by Izzo et al. 2020)

Perhaps the outflows can transport out some material mixed with radioactive elements.

Justification: inner ⁵⁶Ni

Hydrodynamical instabilities are usually invoked for the mixing.

We do not abord details like redistributing the ⁵⁶Ni quasi-spherically.

 \rightarrow Hypothesis of a separate nickel-rich layer. Parameters as mass fraction f_n .

A double nickel distribution that is tuned in this study.

・ロ・・日・・日・・日・・日・

Methods

The 1D hydrodynamical code by (Bersten et al. 2011) is used to calculate bolometric LCs.

We considered different H-poor progenitors.

In Orellana & Bersten (2022) we present the cases that produce two well separated maxima in the LC.

64ª Reunión Anual de la Asociación Argentina de Astronomía

Ξ

SQ (~

Results for Hell MESA progenitor

Varying internal abundance of nickel, with the other parameters fixed. The total ⁵⁶Ni mass indicated in parentheses. Exploded with $E_{exp} = 2 \times 10^{51}$ erg.

64ª Reunión Anual de la Asociación Argentina de Astronomía

19-23 Septiembre 2022

▲□▶▲□▶▲□▶▲□▶ □ のへで

Effect of the variation in the external abundance of nickel.

Argentina le Astronomia	64ª Reunión	Anual de la	Asociación A	Argentina de	Astronomía

19-23 Septiembre 2022

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ Q ○

The ordinary mixing if there were no external component.

Argentina strunomia	64ª Reunión Anual de la Asociación Argentina de Astronomía	

19-23 Septiembre 2022

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ Q ○

 f_2 determines the inner border of external ⁵⁶Ni.

64ª Reunión Anual de la Asociación Argentina de Astronomía

19-23 Septiembre 2022

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ のへぐ

Outermost border for the ⁵⁶Ni-rich mass.

64ª Reunión Anual de la Asociación Argentina de Astronomía

19-23 Septiembre 2022

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ ▶

< @ >

4 Э

Fitting parameters

^{*a*} M(⁵⁶Ni)is afterwards computed, not an initial parameter, ¹ Host-galaxy E(U - B) = 0

590 臣

Э

4

An extreme example, previously study in Bersten et al. (2013) 42.4 SN2008D 42.2 Parameter SN2008D * M_{ej} $3,3 M_{\odot}$ 42.0 log L [erg/s] $5 \, M_{\odot}$ $M_{\rm preSN}$ 41.8 1×10^{51} erg E_k κ_{γ} (cm²/g) $0.03 \ t \le 40 \ d$ 41.6 0.015 *t* > 40 d 41.4 f_0, f_1 0.36, 0.93 20 f_2, f_3 0.995, 1 v _{ph} [10³ km/s] 15 X_{in}, X_{out} 0.026, 0.71 M(⁵⁶Ni)in,out 10 $0.074, 0.018~M_{\odot}$ 5 Data from Modjaz et al. (2009) 80 100 0 20 40 60 t - t_{exp} [days]

The estimated ^{56}Ni mass at the outer layer is $\sim\times2$ larger than 0.01 M_{\odot} in Bersten et al. (2013).

Caveats regarding the influence of external $^{56}\rm{Ni}$ in the He lines (see, Dessart et al 2018)

ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

General remarks

In comparison, for SN2008D the external $^{\rm 56}\rm Ni$ is concentrated at the surface and heavily loaded

To do:

Double nickel could be also the case for other SNe.

- LSQ13abf (Stritzinger et al. 2019)
- SN 2020bvc (Ho et al. 2020)

64ª Reunión Anual de la Asociación Argentina de Astronomía

Ξ.

990

< ロ > < 回 > < 回 > < 回 > < 回 > <

General remarks

In comparison, for SN2008D the external $^{\rm 56}\rm Ni$ is concentrated at the surface and heavily loaded

To do:

Double nickel could be also the case for other SNe.

- LSQ13abf (Stritzinger et al. 2019)
- SN 2020bvc (Ho et al. 2020)

Not a likely alternative scenario for SNe with fast initial decline in the bolometric LC, such as \rightarrow

A fast ultra-stripped SN, De et al. (2018)

Interaction with circumstellar matter, see, e.g. Jin, Yoon & Blinnikov (2021).

▲ □ ▶ ▲ 酉 ▶ ▲ 亘 ▶ ▲ 亘 → ���

Excluded by our pre - selection

 \rightarrow This is not the kind of double-peak we want to research in this work.

Calls for the fast response observational programs that follow SNe.

Even with very early data an identification of specific explosion scenarios is challenging, if only photometric observations are available (Noebauer et al. 2017).

Argentina de Astrunania	64ª Reunión Anual de la Asociación Argentina de Astronomía	19-23 Septiembre 2022				