Symbolic Time Series and Causality Detection: an Uneasy Alliance

Fernando Delbianco ${ }^{1}$
Andrés Fioriti ${ }^{1}$
Fernando Tohmé ${ }^{1}$
Federico Contiggiani ${ }^{2}$

Jornadas Interdisciplinarias en Sistemas Complejos 2021
${ }^{1}$ INMABB (CONICET-UNS) y Depto. de Economía (UNS) ${ }^{2}$ UNRN-IIPPyG

Motivation

- Some economic and social time series have a "noisy" structure.
- Symbolic time series analysis is a useful technique to reduce the dimension of the realization space of the series.
- We wonder if causality relationship is a property that remains invariable after the data is transformed to a symbolic expression.
- Exercises: simulation and observational data.

Symbolic Time Series Analysis in Economics

Symbolic Aggregate Approximation (SAX) (Lin et. al., 2007)

- SAX allows a time series of arbitrary length n to be reduced to a string of arbitrary length $w<n$
- The alphabet size is also an arbitrary integer $a>2$.
- Steps:

1. Data transformation for dimensionality reduction: Piecewise Aggregate Approximation (PPA)
2. Symbolize the PPA representation into a discrete string

SAX: dimensionality reduction via PAA

- A time series C of length n can be represented by a vector $\bar{C}=\bar{c}_{1}, \ldots, \bar{c}_{w}$. in a w-dimensional space.

The i th element of \bar{C} is calculated by

$$
\bar{c}_{i}=\frac{w}{n} \sum_{j=\frac{n}{w}(i-1)+1}^{\frac{n}{w} i} c_{j}
$$

SAX: discretization

1. Consider a normalization of the time series
2. Identify the breakpoints: a sorted list of numbers
$B=\beta_{1}, \ldots, \beta_{|d|-1}$ such that the area under a $N(0,1)$
Gaussian curve from β_{i} to β_{i+1} equals $\frac{1}{|d|}$.
3. Define the alphabet of symbols. Let α_{i} denote the i th element of the alphabet. i.e. $|d|=3, d=\left\{\alpha_{1}=\mathbf{a}, \alpha_{2}=\mathbf{b}, \alpha_{3}=\mathbf{c}\right\}$.
4. Map PAA approximation \bar{C} to a word $\hat{C}=\hat{c}_{1}, \ldots, \hat{c}_{w}$ as follows: $\hat{c}_{i}=\alpha_{j}$, iif $\beta_{j-1} \leq \bar{c}_{i}<\beta_{j}$.

Lin et. al. 2007

Markov-switching Models (MSwM)

Markov-switching models: A two state Markov chain

- MSwM allows to characterize how a non-stationary series transitions between different regimes, drawing the probability distribution of the switches between those regimes.
- Under the MSwM, a regime is the equivalent of a symbol in STSA.

Markov-switching models: definitions

Let be a system with a finite number of states $1, \ldots, N$, such that any period $t \in \mathbb{N}$ the distribution of possible instations of the state variable s_{t} satisfies the following condition:

$$
P\left\{s_{t}=j \mid s_{t-1}=i, s_{t-2}=k, \ldots\right\}=P\left\{s_{t}=j \mid s_{t-1}=i\right\}=p_{i j}
$$

with $p_{i 1}+p_{i 2}+\cdots+p_{i N}=1$.
Each $p_{i j}$ represents the probability of the transition from state i to state j.

Markov-switching models: transition matrix and steady state of the system.

$$
P=\left[\begin{array}{cccc}
p_{11} & p_{21} & \cdots & p_{N 1} \\
p_{12} & p_{22} & \cdots & p_{N 2} \\
\vdots & \vdots & \cdots & \vdots \\
p_{1 N} & p_{2 N} & \cdots & p_{N N}
\end{array}\right]
$$

- P be the transition matrix
- the steady state of the system is understood as an N-components vector $\pi=\left(\pi_{1}, \ldots, \pi_{N}\right)$ such that each π_{i} is the long-term probability of finding the system at state i.
- $\sum_{i}^{N} \pi_{i}=1$, then π satisfies $P \pi=\pi$.
- If $\lambda_{1}=1$ is the first eigenvalue of P, as indicating that π is its associated eigenvector.

Markov-switching models: A two state Markov chain

Markov-switching models: A three state Markov chain

Markov-switching models: time series system

- Time series: $\left\{y_{t}\right\}_{t \geq 0}, y_{t} \in Y$. F_{t} : distributions over Y at t.
- Transitions between regimes:

For $1, \ldots, N$ regimes,

$$
y_{t}-\mu_{s_{t}^{*}}=\phi\left(y_{t-1}-\mu_{s_{t-1}^{*}}\right)+\varepsilon_{s}
$$

where $\mu_{s_{t}^{*}} \in Y$ corresponds to the state $s_{t}^{*} \in\{1, \ldots, N\}$.

- If $s_{t}^{*}=j$ and $s_{t-1}^{*}=i$, at $t-1, \mu_{i}$ is followed in t by μ_{j}, with $\mu_{i} \neq \mu_{j}$.
- The transition from $\mu_{s_{t-1}^{*}}$ to $\mu_{s_{t}^{*}}$, corresponding to transition from state j to state i has probability $p_{i j}$.
- ϕ is a function that embodies the combined action of P and, for each state i and period t, the conditional distribution $F_{t}(y \mid i)$.

Causality analysis with time series data

Transfer Entropy

- Rényi entropy: $H_{q}=\frac{1}{1-q} \log \left(\sum_{i=1}^{n} p_{i}^{q}\right)$

Transfer entropy:
$T E(X \rightarrow Y)=H\left(Y_{t} \mid Y_{t-1: t-p}\right)-H\left(Y_{t} \mid Y_{t-1: t-p}, X_{t-1: t-p}\right)$
Test: $T E(X \rightarrow Y)=0$

Granger causality test

Causality: $X \rightarrow Y$ and $Y \nrightarrow X$
VAR model:

- $Y_{t}=\delta+\sum_{j=1}^{p} \theta_{11, j} Y_{t-j}+\sum_{j=1}^{p} \theta_{12, j} X_{t-j}+u_{Y t}$
- $X_{t}=\eta+\sum_{j=1}^{p} \theta_{21, j} Y_{t-j}+\sum_{j=1}^{p} \theta_{22, j} X_{t-j}+u_{X t}$
X "Granger-cause" Y if:
- $E\left(Y_{t} \mid Y_{t-1}, \ldots, Y_{t-p}, X_{t-1}, \ldots, X_{t-p}\right) \neq E\left(Y_{t} \mid Y_{t-1}, \ldots, Y_{t-p}\right)$, and
- $E\left(X_{t} \mid X_{t-1}, \ldots, X_{t-p}, Y_{t-1}, \ldots, Y_{t-p}\right)=E\left(X_{t} \mid X_{t-1}, \ldots, X_{t-p}\right)$

Test: $H_{0}: \boldsymbol{\theta}_{\mathbf{1 2 , j}}=0$ and $H_{0}: \boldsymbol{\theta}_{\mathbf{2 1 , j}}=0$

Exercises with data

Exercise 1: simulated time series

Raw time series: $y_{t}^{R}=\delta+\sum_{i=1}^{6} \theta_{i} y_{t-p}^{R}+u_{t}$
Caused time series: $y_{t}^{C}=\gamma+\phi_{i} y_{t-1}^{R}+v_{t}$

Yraw

Exercise 1: causality between Yraw, Ycau and Yraw2

Without Dictionary (p-values)

	Caused					
	Yraw		Ycau		Yraw2	
Cause	TE (q=0.9)	Granger	TE (q=0.9)	Granger	TE (q=0.9)	Granger
Yraw			$\mathbf{0 . 0 4}$	$\mathbf{2 . 2 0 E - 1 6}$	0.9	0.1441
Ycau	0.3167	0.6127				
Yraw2	0.6767	0.9765				

Causal graph: raw series

Exercise 1: causality with transformed Yraw and Ycau

Yraw \longrightarrow Ycau? (pvalues)

Yraw Ycau	TE (q=0.9)	Granger
SAX g D2	0.0533	$\mathbf{0 . 0 0 0 3 1 4 8}$
SAX g D3	0.0533	$\mathbf{0 . 0 0 0 3 1 4 8}$
SAX g D4	0.0533	$\mathbf{0 . 0 0 0 3 1 4 8}$
SAX q D2	$\mathbf{0 . 0 1 3 3}$	$\mathbf{8 . 8 4 E - 0 5}$
SAX q D3	0.5	$\mathbf{6 . 8 6 E - 0 5}$
SAX q D4	0.5467	$\mathbf{6 . 8 6 E - 0 5}$
Markov D2	$\mathbf{0}$	0.1
Markov D3	0.36	0.09582
Markov D4	$\mathbf{0}$	0.7512

Ycau \longrightarrow Yraw? (pvalues)

Ycau Yraw	TE (q=0.9)	Granger
SAX g D2	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 0 0 2 0 0 7}$
SAX g D3	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 0 0 2 0 0 7}$
SAX g D4	$\mathbf{0 . 0 0 6 7}$	$\mathbf{0 . 0 0 0 2 0 0 7}$
SAX q D2	$\mathbf{0 . 0 1 3 3}$	$\mathbf{6 . 8 9 E - 0 5}$
SAX q D3	0.1267	$\mathbf{4 . 4 8 E - 0 5}$
SAX q D4	0.1567	$\mathbf{4 . 4 8 E - 0 5}$
Markov D2	$\mathbf{0}$	$\mathbf{6 . 8 6 E - 0 5}$
Markov D3	0.8433	0.5768
Markov D4	$\mathbf{0}$	0.5705

Exercise 1: causality with transformed Yraw and Yraw2

Yraw \longrightarrow Yraw2? (pvalues)

Yraw Yraw2	TE (q=0.9)	Granger
SAX g D2	0.2933	0.5903
SAX g D3	0.3267	0.5909
SAX g D4	0.3667	0.5908
SAX q D2	0.43	0.8221
SAX q D3	0.4367	0.8284
SAX q D4	0.42	0.8285
Markov D2	0.5	0.05735
Markov D3	0.79	0.4254
Markov D4	0	error

Yraw2 \longrightarrow Yraw? (pvalues)

Yraw2 Yraw	TE (q=0.9)	Granger
SAX g D2	0.6567	0.06775
SAX g D3	0.67	0.06775
SAX g D4	0.6533	0.06775
SAX q D2	0.8467	0.3165
SAX q D3	0.76	0.1967
SAX q D4	0.7967	0.1967
Markov D2	1	0.9491
Markov D3	0.9433	0.4864
Markov D4	0	error

Causal graph: symbolic series

Exercise 2: Narratives Data

Narratives about dollar: variables

- Google searches: searches about "dólar blue" between 2004 and 2019.
- "Dólar blue": informal exchange rate between peso and dollar.
- ICC: consumer confidence index, measured by CIF-UTDT.
- Inflation rate (π) : variation rate of the consumer price index.

Without Alphabet (TE)

Without Alphabet (Granger)

SAX Aphabet=2 (TE)

SAX Aphabet=2 (Granger)

π

SAX Aphabet=3 (TE and Granger)

Markov Aphabet=2 (TE)

Markov Aphabet=2 (Granger)

Conclusions

- When the causal relationship is clear, causality test performs as expected with the untransformed data.
- With the data transformed to symbolic series, by the use of SAX or Markov switching model, the tests fail to detect the correct causal relation.
- With the observational data, where the causal relations are less neat, this problem is severe.
- Potential explanation: symbolic transformation distorts the relations between variables in a way that artificially generates causality which is mistakenly detected by the test.

