Symbolic Time Series and Causality Detection: an Uneasy Alliance

Fernando Delbianco¹ Andrés Fioriti¹ Fernando Tohmé¹ Federico Contiggiani²

Jornadas Interdisciplinarias en Sistemas Complejos 2021

¹INMABB (CONICET-UNS) y Depto. de Economía (UNS) ²UNRN-IIPPyG

- Some economic and social time series have a "noisy" structure.
- Symbolic time series analysis is a useful technique to reduce the dimension of the realization space of the series.
- We wonder if causality relationship is a property that remains invariable after the data is transformed to a symbolic expression.
- Exercises: simulation and observational data.

Symbolic Time Series Analysis in Economics

- SAX allows a time series of arbitrary length *n* to be reduced to a string of arbitrary length *w* < *n*
- The alphabet size is also an arbitrary integer a > 2.
- Steps:
 - 1. Data transformation for dimensionality reduction: Piecewise Aggregate Approximation (PPA)
 - 2. Symbolize the PPA representation into a discrete string

SAX: dimensionality reduction via PAA

• A time series C of length n can be represented by a vector $\overline{C} = \overline{c}_1, \ldots, \overline{c}_w$. in a w-dimensional space.

The *i*th element of \overline{C} is calculated by

$$\bar{c}_i = \frac{w}{n} \sum_{j=\frac{n}{w}(i-1)+1}^{\frac{n}{w}i} c_j$$

SAX: discretization

- 1. Consider a normalization of the time series
- 2. Identify the breakpoints: a sorted list of numbers
 - $B = \beta_1, \dots, \beta_{|d|-1}$ such that the area under a N(0, 1)Gaussian curve from β_i to β_{i+1} equals $\frac{1}{|d|}$.
- 3. Define the alphabet of symbols. Let α_i denote the *i*th element of the alphabet. i.e. |d| = 3, $d = \{\alpha_1 = \mathbf{a}, \alpha_2 = \mathbf{b}, \alpha_3 = \mathbf{c}\}$.

Lin et. al. 2007

Markov-switching Models (MSwM)

- MSwM allows to characterize how a non-stationary series transitions between different regimes, drawing the probability distribution of the switches between those regimes.
- Under the MSwM, a regime is the equivalent of a symbol in STSA.

Let be a system with a finite number of states $1, \ldots, N$, such that any period $t \in \mathbb{N}$ the distribution of possible instations of the state variable s_t satisfies the following condition:

$$P\{s_t = j | s_{t-1} = i, s_{t-2} = k, \ldots\} = P\{s_t = j | s_{t-1} = i\} = p_{ij}$$

with $p_{i1} + p_{i2} + \cdots + p_{iN} = 1$. Each p_{ij} represents the probability of the transition from state *i* to state *j*.

Markov-switching models: transition matrix and steady state of the system.

$$P = \begin{bmatrix} p_{11} & p_{21} & \cdots & p_{N1} \\ p_{12} & p_{22} & \cdots & p_{N2} \\ \vdots & \vdots & \cdots & \vdots \\ p_{1N} & p_{2N} & \cdots & p_{NN} \end{bmatrix}$$

- P be the transition matrix
- the steady state of the system is understood as an N-components vector π = (π₁,...,π_N) such that each π_i is the long-term probability of finding the system at state *i*.
- $\sum_{i}^{N} \pi_{i} = 1$, then π satisfies $P\pi = \pi$.
- If λ₁ = 1 is the first eigenvalue of P, as indicating that π is its associated eigenvector.

Markov-switching models: A two state Markov chain

Markov-switching models: A three state Markov chain

Markov-switching models: time series system

- Time series: $\{y_t\}_{t \ge 0}$, $y_t \in Y$. F_t : distributions over Y at t.
- Transitions between regimes:

For $1, \ldots, N$ regimes,

$$y_t - \mu_{s_t^*} = \phi\left(y_{t-1} - \mu_{s_{t-1}^*}\right) + \varepsilon_s$$

where $\mu_{s_t^*} \in Y$ corresponds to the state $s_t^* \in \{1, \dots, N\}$.

- If $s_t^* = j$ and $s_{t-1}^* = i$, at t 1, μ_i is followed in t by μ_j , with $\mu_i \neq \mu_j$.
- The transition from μ_{s^{*}_{t-1}} to μ_{s^{*}_t}, corresponding to transition from state *j* to state *i* has probability p_{ij}.
- φ is a function that embodies the combined action of P and, for each state i and period t, the conditional distribution F_t(y|i).

Causality analysis with time series data

• Rényi entropy:
$$H_q = \frac{1}{1-q} \log \left(\sum_{i=1}^n p_i^q \right)$$

Transfer entropy:

 $TE(X \to Y) = H(Y_t \mid Y_{t-1:t-p}) - H(Y_t \mid Y_{t-1:t-p}, X_{t-1:t-p})$

Test: $TE(X \rightarrow Y) = 0$

Causality: $X \rightarrow Y$ and $Y \not\rightarrow X$ VAR model:

- $Y_t = \delta + \sum_{j=1}^{p} \theta_{11,j} Y_{t-j} + \sum_{j=1}^{p} \theta_{12,j} X_{t-j} + u_{Yt}$
- $X_t = \eta + \sum_{j=1}^p \theta_{21,j} Y_{t-j} + \sum_{j=1}^p \theta_{22,j} X_{t-j} + u_{Xt}$
- X "Granger-cause" Y if:
 - $E(Y_t \mid Y_{t-1}, \dots, Y_{t-p}, X_{t-1}, \dots, X_{t-p}) \neq E(Y_t \mid Y_{t-1}, \dots, Y_{t-p})$, and
 - $E(X_t \mid X_{t-1}, ..., X_{t-p}, Y_{t-1}, ..., Y_{t-p}) = E(X_t \mid X_{t-1}, ..., X_{t-p})$

Test: $H_0: \theta_{12,j} = 0$ and $H_0: \theta_{21,j} = 0$

Exercises with data

Exercise 1: simulated time series

Raw time series: $y_t^R = \delta + \sum_{i=1}^6 \theta_i y_{t-p}^R + u_t$ Caused time series: $y_t^C = \gamma + \phi_i y_{t-1}^R + v_t$

Without Dictionary (p-values)

	Caused					
	Yraw		Ycau		Yraw2	
Cause	TE (q=0.9)	Granger	TE (q=0.9)	Granger	TE (q=0.9)	Granger
Yraw			0.04	2.20E-16	0.9	0.1441
Ycau	0.3167	0.6127				
Yraw2	0.6767	0.9765				

Causal graph: raw series

Yraw \longrightarrow Ycau? (pvalues)

Yraw Ycau	TE (q=0.9)	Granger
SAX g D2	0.0533	0.0003148
SAX g D3	0.0533	0.0003148
SAX g D4	0.0533	0.0003148
SAX q D2	0.0133	8.84E-05
SAX q D3	0.5	6.86E-05
SAX q D4	0.5467	6.86E-05
Markov D2	0	0.1
Markov D3	0.36	0.09582
Markov D4	0	0.7512

Ycau \rightarrow Yraw? (pvalues)

Ycau Yraw	TE (q=0.9)	Granger
SAX g D2	0.02	0.0002007
SAX g D3	0.01	0.0002007
SAX g D4	0.0067	0.0002007
SAX q D2	0.0133	6.89E-05
SAX q D3	0.1267	4.48E-05
SAX q D4	0.1567	4.48E-05
Markov D2	0	6.86E-05
Markov D3	0.8433	0.5768
Markov D4	0	0.5705

Yraw \longrightarrow Yraw2? (pvalues)

Yraw Yraw2	TE (q=0.9)	Granger
SAX g D2	0.2933	0.5903
SAX g D3	0.3267	0.5909
SAX g D4	0.3667	0.5908
SAX q D2	0.43	0.8221
SAX q D3	0.4367	0.8284
SAX q D4	0.42	0.8285
Markov D2	0.5	0.05735
Markov D3	0.79	0.4254
Markov D4	0	error

Yraw2 \longrightarrow Yraw? (pvalues)

Yraw2 Yraw	TE (q=0.9)	Granger
SAX g D2	0.6567	0.06775
SAX g D3	0.67	0.06775
SAX g D4	0.6533	0.06775
SAX q D2	0.8467	0.3165
SAX q D3	0.76	0.1967
SAX q D4	0.7967	0.1967
Markov D2	1	0.9491
Markov D3	0.9433	0.4864
Markov D4	0	error

Causal graph: symbolic series

Exercise 2: Narratives Data

- Google searches: searches about "dólar blue" between 2004 and 2019.
- "Dólar blue": informal exchange rate between peso and dollar.
- ICC: consumer confidence index, measured by CIF-UTDT.
- Inflation rate (π) : variation rate of the consumer price index.

Without Alphabet (TE)

Without Alphabet (Granger)

SAX Aphabet=2 (TE)

SAX Aphabet=2 (Granger)

SAX Aphabet=3 (TE and Granger)

Markov Aphabet=2 (TE)

Markov Aphabet=2 (Granger)

Conclusions

- When the causal relationship is clear, causality test performs as expected with the untransformed data.
- With the data transformed to symbolic series, by the use of SAX or Markov switching model, the tests fail to detect the correct causal relation.
- With the observational data, where the causal relations are less neat, this problem is severe.
- Potential explanation: symbolic transformation distorts the relations between variables in a way that artificially generates causality which is mistakenly detected by the test.