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A B S T R A C T   

The decline of pollinators is a widespread problem in today’s agriculture, affecting the yield of many crops. 
Improved pollination management is therefore essential, and honey bee colonies are often used to improve 
pollination levels. In this work, we applied a spatially explicit agent-based model for the simulation of crop 
pollination by honey bees under different management scenarios and landscape configurations. The model in
cludes 1) a representation of honey bee social dynamics; 2) an explicit representation of resource dynamics; 3) a 
probabilistic approach to the foraging site search process; and 4) a mechanism of competition for limited re
sources. We selected 60 sample units from the rural landscape of the Chilean region with the largest apple- 
growing area and evaluated the effectiveness of different pollination strategies in terms of number of visits 
and number of pollinated flowers per hectare of apple crops. Finally, we analyzed how the effects of these 
practices depended on the structure of adjacent landscapes. Higher colony density per hectare in the focal crop 
increased the number of honey bee visits to apple inflorescences; however, the effects were nonlinear for rates of 
pollinated flowers, suggesting that there is an optimum beyond which a greater number of honey bees does not 
signify increased levels of crop pollination. Furthermore, high relative proportions of mass flowering crops and 
natural habitats in the landscape led to a decrease in honey bee densities in apple fields in landscapes with high 
relative cover of apple orchards (dilution effect). Our results indicate that for optimal crop pollination, strategies 
for management of pollinator species should consider the modulating effects of the surrounding landscape on 
pollination effectiveness. This model could thus be a useful tool to help farmers, beekeepers, and policy-makers 
plan the provision of pollination services, while also promoting the biodiversity and sustainability of 
agroecosystems.   

1. Introduction 

There is widespread recognition that the absence or shortage of 
pollinators is limiting crop yields around the world (Garibaldi et al., 
2011), and managed honey bee colonies are commonly used to address 
this problem. The European honey bee (Apis mellifera) is the most widely 
managed species, both in open pollination (fields) and enclosed systems 
(Garibaldi et al., 2017). Managed honey bee colonies have certain ad
vantages: they can be supplied on demand to coincide with blooming, 
and the location of colonies in the crop is relatively unconstrained 

(Cunningham et al., 2016). However, even though biotic pollination is 
important for many crops (Potts et al., 2016), it is rarely monitored 
(Garibaldi et al., 2020). 

Current management strategies for optimal pollination commonly 
involve providing managed pollinators, such as honey bees, at times of 
high demand. Indeed, many pollination reference handbooks (e.g., 
Delaplane and Meyer, 2000; Lesser Preuss, 2004) and empirical evi
dence (Isaacs and Kirk, 2010; Howlett et al., 2015; Cunningham et al., 
2016) suggest placing a particular number of honey bee colonies per 
crop-cultivated area, to saturate crop flowers with foraging bees brought 
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in at the beginning of the target crop blooming period (James and 
Pitts-Singer, 2008). Colony density is only one aspect of the strategy; 
optimal pollination also depends on the spatial organization of honey 
bee colonies, since distance between colony placements may influence 
the spatial pattern of bee activity, affecting the depletion rate of pollen 
from flowers (Cunningham et al., 2016). Except in some highly 
pollinator-dependent crops (e.g., almonds) where the use of managed 
pollinators is routine, the effectiveness of managed pollination practices 
has been under-studied. 

Understanding how landscape structure (i.e., landscape composition 
and configuration) determines the densities of functionally relevant 
species is critical for maintaining ecosystem services, like pollination, in 
anthropogenically transformed landscapes (Tscharnkte et al. 2012). 
Movement across habitats is a common phenomenon in many species, 
and the spillover of pollinators from natural habitats to agroecosystems 
has been well documented in human-dominated landscapes (Garibaldi 

et al., 2011). While there is much evidence for spillover from natural 
habitats to managed areas, little attention has been given to flow in the 
opposite direction (Blitzer et al., 2012). For instance, mass-flowering 
crops may alter pollination services to other simultaneously blooming 
crops, either decreasing pollination via competition for pollinators or 
facilitating it via pollination spillover (Holzschuh et al., 2011; Holz
schuh et al., 2016; Osterman et al., 2021). The response of managed 
honey bee abundance and service to landscape predictors is nonlinear, 
and depends on interactions between landscape composition and 
configuration, and the pollination strategy used. Nevertheless, to our 
knowledge this has not been examined. 

Mechanistic models can help us investigate the implications of col
ony management practices for crop pollination, and their interaction 
with landscape structure effects. Many models have been developed to 
explore how pollination services are delivered across landscapes, and 
how these services are affected by changes in landscape structure. 
Several of these models include a spatial dimension and incorporate 
seasonal aspects of floral resources and population dynamics (Lonsdorf 
et al., 2009; Zulian et al., 2013; Olsson and Bolin, 2014; Olsson et al., 
2015; Hӓussler et al. 2017). Some spatially explicit models can also 
predict how management interventions in a particular landscape affect 
pollination (Olsson et al., 2015; Hӓussler et al. 2017) and address the 
impact of various combinations of stressors on pollinators (Becher et al., 
2018; Becher et al., 2016; Becher et al., 2014). Although these models 
are of interest in addressing this question, they assume that there is no 
resource depletion, which is key to understanding honey bee foraging 
behavior, and particularly how exploitative competition can affect 
foraging site choice (Inouye 1978; Balfour et al., 2015). One exception is 
the paper by Bolin et al. (2018) that demonstrates the existence of a 
coexistence mechanism by developing a spatially explicit mechanistic 
model for exploitative competition, using an existing general framework 
for habitat selection by central place foragers (Olsson et al., 2008, 2015; 
Olsson and Bolin 2014). However, this model has no relation to the use 
of managed honey bee colonies for crop pollination. 

Furthermore, although some models can provide relative measures 
of pollinator visitation to crops (Lonsdorf et al., 2009; Zulian et al., 
2013) or relatively realistic predictions of visitation rates (Becher et al., 

Fig. 1. Fraction of pollinated flowers as a function of time, showing the effect 
of damage by over-visiting. This value of λ is used throughout the study. 

Fig. 2. Land cover map of the Maule region in Chile and location of landscape sample units. The units are square areas of 900 ha, selected to encompass a gradient of 
proportional area occupied by apple crops within the landscape sampling units. Upper right corner: Spearman correlations between landscape variables. The central 
inset shows the location of the Maule region in Chile, South America. 
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2014; Olsson et al., 2015; Hӓussler et al. 2017), they do not incorporate 
process-based ecological production functions that would enable 
assessment of the effects of pollination levels on crop fruit set. One 
exception is the spatially explicit simulation model developed by Sáez 
et al. (2018b), which addresses the processes of pollen removal and 
deposition within apple orchards, with emphasis on how the spatial 
design of trees in orchards and honey bee locations modify the polli
nation process. However, the spatial scale considered (a field of 1 ha) 
does not allow examination of how landscape structure moderates 
pollinator performance on pollinator-dependent crops. 

In this study, we assess the effect of honey bee colony management 
on apple pollination in the central-southern region of Chile, considering 
particularly the number of colonies per hectare and their spatial 
arrangement. We also analyze how the effects of these strategies differ 
according to the characteristics of the surrounding landscape. To this 
end, we apply a spatially explicit agent-based model (Joseph et al., 

2020) to simulate the pollinator activity of honey bees in real agricul
tural landscapes; we expand the model by incorporating an ecological 
production function that describes the pollination and post-pollination 
processes that determine fruit set. 

2. Materials and methods 

2.1. Honey bee colonies 

We used a spatially explicit agent-based model (Joseph et al., 2020) 
to simulate crop pollination by honey bees. This model represents honey 
bee colonies as unique and independent entities that interact with each 
other through their local environment. Another important characteristic 
of the colonies is that they have adaptive behavior, i.e., they collect 
nectar and pollen from food sources in the surrounding landscape to 
store in their nest and feed to the brood. However, to exploit a food 

Fig. 3. Graphical display of the generation of treatments in the factorial experiment that combined colony density per hectare under apple cultivation (with two 
levels) and distance between groups of colonies within apple crops (with two levels). 

F. Santibañez et al.                                                                                                                                                                                                                             



Ecological Modelling 472 (2022) 110094

4

source, the bees need to find it in the first place. Because floral resources 
are limited, the food collected by a colony in a foraging site necessarily 
reduces the food available to other colonies at the site, affecting the 
foraging decisions and patch visitation rates of the bees and, in conse
quence, colony development and survival. 

Each honey bee colony in the model is characterized by its location, 
its number of bees and its quantity of honey. Intra-colony demography 
and life history characteristics are based on the model proposed by 
Khoury et al. (2013), where colony growth is determined by food 
availability and its interaction with behavioral and social processes in 
the colony. The only difference is that while in this model the food stores 
increase proportionally to the number of foragers, in our model it in
creases with the daily gain of the foragers, Gt , which depends on the 
resource availability in the surrounding landscape. The equation for the 
amount of food that is stored in the hive and available for colony use is: 

F(t+1) = Ft − γA
(
nf + nw

)
− γBnb + Gt, (1)  

with Ft representing the amount of food on day t, γA the consumption of 
stored food by workers and foragers, γB the consumption of stored food 
by broods, and nf , nw, nb are the number of foragers, workers and broods, 
respectively. 

The Khoury et al. (2013) model uses simple differential equations to 
represent the transitions of eggs laid by the queen to brood, which then 
become hive bees and finally forager bees, and the process of social 
inhibition that regulates the rate at which hive bees begin to forage. The 
model assumes that food availability can influence both the number of 
broods successfully reared to adulthood and the rate at which bees 
transition from hive duties to foraging. 

2.2. Land cover and floral resource dynamics 

The input data for the model are from land cover maps, composed of 
a discrete number of land cover classes, where honey bee colonies can 
search for food. Each land cover class is paired to a resource carrying 
capacity (K), a daily resource renewal rate (r), a value for floral 
attractiveness for honey bees (FA) and a flowering period. Carrying 
capacity (K) is the amount of nectar and/or pollen resources available in 
each cell for a certain number of land-cover classes, which represent 
fields with crops or habitats with wild flowers. We assume that the 
carrying capacity is constant during the flowering period, and equal to 
zero the rest of the year, and that these resources are renewed daily at a 
constant rate r during the flowering period. We do not distinguish be
tween pollen and nectar (protein and carbohydrates) here. Time evolves 
in discrete steps, with a time unit of one day. We keep the carrying ca
pacity constant, assuming that the new flowers during the flowering 
period compensate for the loss of production due to pollination and 
damage (as implemented in Joseph et al. (2020)). Floral attractiveness 
was defined as a score ranging from zero (not at all attractive, never 
used) to one (very attractive, preferred over other flowers). We assume 

that attractiveness scores reflect both attractiveness per se and nutri
tional quality. Scoring was based on literature and expert opinion (Koh 
et al., 2015; Zulian et al., 2013)(Appendix A). 

The model uses land cover maps of 3 km by 3 km with a spatial 
resolution of 10 m, where bees can search for food sources. This preci
sion level is small enough to capture the size of the Apis mellifera 
foraging area and large enough to be interesting in terms of their flight 
range, since not all colonies will be able to forage across the entire map. 
The maximum foraging distance has been set to 3 km so that bees can 
forage on almost all the map. It is known that bees can make trips farther 
than 3 km (Abou-Shaara, 2014), but these trips cannot be seen on the 
map as currently implemented. The average foraging distance of the 
bees is not a parameter of the model, but a result of the foraging process, 
and varies with the exponent γ of the preference function and with the 
distribution of the food sources in the landscape. The exponent γ rep
resents the knowledge that the hive has of the resources in its 
surroundings. 

The adoption of a foraging site by a group of foragers implies that 
they constantly come back to this site until the nectar source is 
exhausted (Lesser Preuss, 2004). In the model, each day a colony selects 
a number of foraging sites with a size of 30 m by 30 m (9 cells), where it 
will send a fraction of foragers to collect food. The number of foraging 
sites a colony visits each day is proportional to the number of foragers 
(nf ) in the colony divided by the size of a squad (k). 

A honey bee colony selects their foraging sites at the beginning of 
each day, relying on information provided by scouting bees: the foraging 
resources at the sites and their distance from the colony. The probability 
of choosing a site (x, y) is defined as depending on Rt(x,y), which is the 
total resource on a square lattice composed of a central cell (x, y) and the 
eight cells that surround it, and the flight cost of reaching them, f(d): 

P(x,y) =

⎧
⎪⎨

⎪⎩

(Rt(x, y)f (d)γ
)

∑(u,v)

∈ rf
(Rt(u,v)f (d)γ)

, if d < rf

0 otherwise.

(2)  

where d is the Euclidean distance from the hive to (x, y) and rf is the 
range of flight of the bees. The cost f(d), normalized to the interval [0,1], 
is an affine decreasing function of d, with f(0) = 1 and f(rf ) = 0. The 
exponent γ represents the knowledge that the colony have of the 
resource in its surroundings; if γ = 0, the colony chooses its foraging sites 
uniformly at random, and when γ→ ∞, the colony systematically 
chooses the site with the highest harvestable resource. The precise value 
of this parameter is less important than the general shape of the func
tion, so there is some freedom to choose it within the boundaries of 
biological significance. We have used rf = 3 km and γ= 3 as in Joseph 
et al., 2020. 

Once the foraging sites have been selected, the colony sends a frac
tion vi of foragers to each site i, also depending on resource availability 

Table 1 
Estimated parameters and 95% confidence intervals (CIs) for each predictor variable in the best-ranked models relating the number of visits and the number of 
pollinated flowers in apple crops. Only significant main effects and interactions are shown (Appendix C).   

No. visits • ha− 1 • day− 1 No. pollinated flowers • ha− 1 • day− 1  

Predictor Estimate (CI 95%) Predictor Estimate (CI 95%) 

intercept 4.221.829 (3.671.148, 4.772.509,5) 599.267 (549.297, 649.237) 
Density (cph) 1.573.820 (1.040.449,3, 2.107.190,9) 304.531 (247.589, 361.473) 
ln (apple cover) 1.751.169 (1.594.855,1, 1.907.482,9) 350.022 (311.899, 388.144) 
ln (apple cover)2 – – -28.927 (-38.073, -19.782) 
mfc cover (%) -87.130 (-104.070,9, -70.189,3) -7.312 (-8.688, -5.936) 
snh cover (%) -53.630 (-60.534,8, -46.724,4) -3.502 (-4.067, -2.939) 
ed land (m • ha) -2.962 (-6.196,8, 272,68) -393 (-657, -129) 
ln (apple cover): density 1.859.655 (1.643.792,8, 2.075.518,8) 109.859 (56.152, 163.565) 
ln (Apple cover)2: density – – -34.859 (-47.643, -22.075)  
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Fig. 4. Partial effects plots showing the effect of covariates on the number of visits (left column) and number of pollinated flowers (right column) in the apple crops. 
The fitted values are plotted on the y axis and the focal predictor on the x axis. These graphs give the partial effect of covariates, with all other predictors fixed at 
the mean. 
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and distance from the hive (d). This parameter (vi) is a weighting factor, 
so that the more foraging resources there are on a harvesting site, the 
more foragers are sent to it (Eq. (5), Joseph et al., 2020). 

As a result of the foraging site selection process, several colonies may 
select the same foraging sites and compete for the resources (intra- 
specific competition). We implement this possibility of colony compe
tition by sorting each day a random harvesting order τ for each colony. 
Sorting this order at every time step averages the effect of the selected 
order. Through exploitation, colonies interact with each other indi
rectly, responding to a resource level that has been depressed by the 
activity of competitors (Rτ

t (x, y)). The probability of colonies choosing 
the same site is higher when the resource in their surroundings is 
globally low, and thus the competition is stronger. 

Let Rτ
t (x, y) correspond to the value of the resources after the turn of 

the colony which feeds at round τ. The harvestable resources available 
for the next colony at the site is the product of Rτ

t (x, y) and f(d). Let c 
correspond to the maximum that a forager can carry back if the distance 
to the hive is null. If the resource is in excess, the foragers sent to the site 
collect the maximum quantity they can carry during the day, cf(d)vknf , 
but if the resource is lower than this value, they take it all, and deplete 
the site. The daily gain of colony i at site (x, y) can then be described as 
follows: 

gi,t(x, y) = min
(
cf (d)vinf ,Rτ

t (x, y)
)

(3) 

The total daily gain of a colony is, then, the sum of all the local gains 
at its foraging sites, Gt =

∑

i
gi,t(x,y). 

2.3. Pollination function 

In this work we expand the model of Joseph et al. (2020), incorpo
rating an indicator of the level of crop pollination. This incorporation is 
directly related to scientific studies that estimate the number of visits 
required to fully fertilize the receptive ovules of a single flower (S.K. 

Vicens and Bosch 2000; S.K. Javoreck et al., 2002; Godwin et al., 2013; 
Sáez et al., 2014; Sáez et al., 2018a; Garibaldi et al., 2020). Let us 
formulate a model for the number of flowers successfully pollinated at 
each cell. This number depends on three factors: the number of flowers 
at the cell multiplied by the probability of pollination and by the 
probability of remaining viable. Both of these probabilities depend on 
the number of visits. If we call p the probability that a visit will lead to 
successful pollination (i.e., mean efficiency of one visit), the probability 
that a flower will be successfully pollinated after a number Vt of visits is 
1 − (1 − p)Vt . Taking into account the damage that can be done to the 
flower (Cribb, 1990;Velthuis and Van Doorn, 2006; Morris et al., 2010; 
Badano and Vergara, 2011; Garibaldi et al., 2013; Sáez et al., 2014; 
Rollin and Garibaldi, 2019; Sáez et al., 2018a), let us say that each visit 
has a constant probability q of damage. After repeated visits the prob
ability of remaining viable is (1 − q)Vt , which can be recast as an 
exponential decaying with a constant rate (similar to that used in Sáez 
et al., 2018a). Thus, the proportion of flowers that will be pollinated can 
be written as: 

Pt(x, y) = exp(− λVt)
(
1 − (1 − p)Vt) Nfl(x, y) (4)  

where Nfl(x, y) is the number of flowers in the cell, λ is a constant decay 
rate and Vt is the number of visits per flower per day. Fig. 1 shows the 
time dependence of this function. 

The outputs of the model are two matrices: one represents the 
number of visits to each cell, while the second shows the number of 
pollinated flowers in each cell. Both variables have been used in other 
studies as a proxy for pollination efficiency (Rollin and Garibaldi, 2019). 
The output matrix of the simulation model using the equation of polli
nation and post-pollination processes is an innovation introduced into 
the model presented in Joseph et al. (2020). 

We programmed the simulations in Spyder 3. All codes are written in 
Python using the CUDA module for GPU computation. All the parame
ters used for the colony model have been kept from the study by Khoury 

Fig. 5. The output matrix of the average number 
of pollinated flowers per cell generated by the 
model. The upper row shows the landscape 
sampling unit with the minimum percentage of 
apple crops (0.47%), the middle row shows the 
landscape sampling unit with the average per
centage of apple crops (14.47%), and the bottom 
row shows the landscape sampling unit with the 
maximum percentage of apple crops (60.6%). 
The plots on the right side of the figure show the 
average number of pollinated flowers per cell in 
apple crops for each colony density.   

F. Santibañez et al.                                                                                                                                                                                                                             



Ecological Modelling 472 (2022) 110094

7

et al. (2013). A summary of the parameters and their values is provided 
in Appendix B. 

2.4. Baseline landscapes 

We focused on agricultural landscapes of the Maule region in Chile, 

characterized by the heterogeneous distribution of grasslands and crop 
fields combined with plantation forestry and natural areas, mostly 
sclerophyllous forest. We used a national land cover map (Zhao et al., 
2016) and the regional fruit census (ODEPA, 2016) to obtain a regional 
land cover map. First, we standardized the map classification to six 
land-use classes: croplands, natural and semi-natural habitats (hereafter, 

Fig. 6. Partial effects plots showing the effect of covariates on the number of visits (left column) and number of pollinated flowers (right column) in the landscape 
surrounding the apple orchards. The fitted values are plotted on the y axis and the focal predictor on the x axis. These graphs give the partial effect of covariates, with 
all other predictors fixed at the mean. 

Table 2 
Estimated parameters and 95% confidence intervals (CIs) for each predictor variable in the best-ranked models relating the number of visits and the number of 
pollinated flowers in the surrounding landscape. Only significant main effects and interactions are shown (Appendix C).   

No. visits • ha-1 • day− 1 No. pollinated flowers • ha-1 • day-1  

Predictor Estimate (CI 95%) Predictor Estimate (CI 95%) 

intercept -167.034 (-273.858, -60.209) -24.794 (-43.555, -6.033) 
density (cph) 168.791 (51.410, 286.172) 48.849 (29.234, 70.464) 
apple cover) 58.537 (49.408, 67.667) 18.108 (16.505, 19.711) 
apple cover)2 761 (588, 934) -152 (-183, -122) 
mfc cover (%) 15.798 (11.696, 19.901) 1.218 (498, 1939) 
snh cover (%) 6.833 (5.244, 8.421) 1.742 (1.463, 2.021) 
density: apple cover 54.856 (42.079, 67.634) 8.923 (6.679, 11.167) 
density: apple cover2: 799 (556, 1.042) -133 (-175, -90)  
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“natural habitats”), water bodies, urban areas, barren lands, and snow 
and ice. The natural habitats include forests, grasslands, shrubs and 
wetlands. 

We then identified the fruit crops with the largest cultivated area in 
the region, based on the regional fruit census. The major crops were 
apples, cherries, olives, kiwis, walnuts, and pears, while hazelnuts, 
blueberries, raspberries and blackberries were cultivated on a smaller 
scale (ODEPA, 2016). Finally, we worked on the land cover classification 
scheme on a more detailed level, performing an overlay of the fruit crop 
classes in the cropland class, increasing the number of land cover classes 
to 16 in total (Appendix A). This map was resampled to change the cell 
size from 30 to 10 m, the spatial resolution at which the model works. 

A total of 60 maps of 3 km x 3 km were selected along independent 
gradients of landscape composition (% of apple crops) and configuration 
(edge density) (Fig. 2; sp = − 0.10, P = 0.43). To determine landscape 
composition, on each map we quantified the percentage cover of apple 
crops, natural habitats, and mass-flowering crops. Mass-flowering crops 
included all fruit/nut crops present in the study landscapes whose 
flowering periods overlapped, at least in part, with apple crops (but did 
not include them). The flowering periods of cherries, pears, blueberries, 
raspberries and walnuts partially matched the apple blooming period 
(de la Cuadra et al. 2019). 

We also calculated landscape configuration as the total length of 
edges per area of each map (edge density, in m/ha). Landscapes with 
high edge density increase opportunities for exchange, thus favoring the 
spillover of energy, resources and organisms across habitats, including 
between managed and natural ecosystems. This measure has been 
frequently used in other studies (Fahrig 2003; Martin et al., 2019 ; 
Nicholson et al., 2017). To obtain these landscape metrics we used 
Fragstats 4.2 software (McGarigal and Ene, 2014). 

The percentage area covered by apple crops spanned a gradient of 
0.5 to 60.6 percent (mean ± SD 14.5 ± 12.9%), natural habitats covered 
a gradient of 0 to 81.8 percent (mean ± SD 19.3 ± 21.2%) and mass- 
flowering crops spanned a gradient of 0 to 27.69 percent (mean ± SD 
10.2 ± 7.9). Additionally, the selected maps covered a gradient of edge 
density within the range of 60.6 - 242.2 m/ha (mean ± SD 124.3 ± 38.6 
m/ha). 

2.5. Landscapes with simulated colony density and arrangement strategies 

We generated management scenarios by adding honey bee colonies 
virtually, following a factorial design that combines two factors: colony 
density, with two levels (4 and 8 hives per ha of apple crop) and the 
distance between groups of colonies, also with two levels (125 and 250 
m). A total of 4 total treatments and 60 replications were therefore 
carried out for each treatment. 

We represented the distance between groups of colonies by treating 

their location as the center of a circle whose diameter indicates the 
distance between groups. From this value we generated a network of 
circles for each distance on each map and estimated how many circles 
could fit inside each apple orchard. We considered the center of each 
circle as a colony group, so we used these coordinates to determine the 
spatial arrangement of colony groups within each apple orchard, for 
each treatment, on each map (Fig. 3). 

To determine the number of colonies in each apple field for each 
selected colony density, we multiplied the number of colonies for each 
density level by the size of each focal crop field. We then divided the 
number of colonies in each apple field by the number of circles con
tained in each field, for each of the distance factor levels. 

We considered only spring and summer seasons, when most crops 
bloom and the demand for honey bee colonies for crop pollination 
usually increases. Natural habitats begin to bloom in the spring and 
extend to summer due to their greater floral diversity; in contrast, crops 
have shorter blooming periods of around 30 days at different moments 
of both seasons, since not all crops bloom simultaneously. Most flow
ering, and therefore the demand for pollination services, occurs between 
August and November in the central-northern and central-southern re
gions of Chile (de la Cuadra et al. 2019; Estay, 2012). 

Simulated honey bee colonies were active for 40 days. We considered 
a flowering period of 30 days for apple cultivars. Moreover, we included 
a period of 10 days, 5 days before and 5 after the beginning of flowering, 
which enabled us to incorporate the variability of times in pollination 
contracts; for instance, placement of the colonies. 

2.6. Statistical analyses 

We used general linear models with a normal error distribution to 
analyze the effects of landscape composition and configuration, crop 
pollination management, and the interaction between these variables, 
on the number of visits and the number of pollinated flowers per hectare 
in the apple fields. Visits to the apple crops were estimated as the 
average number of visits per hectare of apples cultivated, and visits to 
the adjacent landscape were estimated as the average number of visits 
per hectare of the landscape surrounding the apple crops. The numbers 
of pollinated flowers were estimated as the number of pollinated flowers 
by hectare of cultivated apple crops and the number of pollinated 
flowers per hectare of landscape adjacent to these crops. To avoid 
collinearity between variables, a non-parametric multiple correlation 
matrix expressed in a correlogram was performed using the Spearman 
correlation (sp) (Fig. 2). We checked for multicollinearity between our 
chosen variables using the variance inflation factor (VIF). Variance 
inflation factors (VIFs) for all predictors (colony density, apple cover, 
mass-flowering crops, natural habitats, edge density) were always lower 
than 1.8 in all models. 

The models considered the effects of honey bee colony density 
(categorical variable), the distance between groups of colonies (cate
gorical variable), the proportion of apple crops (quantitative variable), 
the proportion of mass-flowering crops (quantitative variable), the 
proportion of natural habitats (quantitative variable), the landscape 
edge density (quantitative variable) and their interactions. The squared 
focal crop proportion and the logarithm of the focal crop proportion 
were also included in order to consider nonlinear responses to the 
different colony management strategies. 

We used multi-model inference (Burnham et al., 2011) to select the 
minimum adequate model by the lowest Akaike Information Criteria 
value (AIC), using the model.sel function of the MuMin package (Package 
’MuMIn’) of the R version 4.1.1 statistical software (R Core Team, 
2020). The objective of AIC model selection is to estimate the infor
mation loss when model gi is used to approximate full reality (f). A 
measure for the discrepancy between full reality and model gi is given by 
the Kullback-Leibler (K-L) information quantity I(f ,g), which is equal to 
the negative Boltzmann’s (1877) generalized entropy. 

Akaike (1973) has shown that choosing the model with the lowest 

Fig. 7. Differences in the profitability of different management strategies 
(colonies per hectare, cph) as a function of the cultivated area within 
the landscape. 
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expected information loss is asymptotically equivalent to choosing a 
model Mi, i = 1, 2, …, K that has the lowest AIC value. The AIC is 
defined as: 

AICi = − 2logLi + 2Vi, (5)  

where Li, the maximum likelihood for the candidate model i, is deter
mined by adjusting the Vi free parameters in such a way as to maximize 
the probability that the candidate model has generated the observed 
data. Eq. (5) shows that the AIC rewards descriptive accuracy via the 
maximum likelihood, and penalizes lack of parsimony according to the 
number of free parameters. The model with the smallest AIC value was 
selected as the ‘best’ among the models tested. The AIC differences Δi =

AICi − AICmin were computed over all candidate models gi. To quantify 
the plausibility of each model, given the data and the set of models, the 
‘Akaike weight’ wi of each model was calculated, where: 

wi =
exp

(
− 1

2Δi
)

∑R
j=1exp

(
− 1

2Δr
) (6) 

The ‘Akaike weight’ is considered as the weight of evidence in favor 
of model i being the actual best model of the available set of models 
(Burnham and Anderson, 2002; Burnham et al., 2011). We also esti
mated the relative importance (ri) of predictor variables xj in the set of 
models with the importance function of the MuMin package (Package 
’MuMIn’), which sums the Akaike weights across all the models in the 
set where variable j occurs. Thus, the relative importance of variable j is 
reflected in the sum w + (j). The larger the w + (j) the more important 
variable j is, relative to the other variables (Burnham and Anderson, 
2002). Predictors with ri > 0.6 were considered strongly related to 
response variables. 

We performed a graphical inspection of the models to evaluate their 
adequacy by plotting: i) standardized residuals against fitted values and 
the predictive variables and, ii) a quantile-quantile distribution of 
standardized residuals. 

2.7. Return on investment analysis 

Return On Investment (ROI) analysis was used to evaluate the effi
ciency of different colony management decisions in pollination. The 
definition of ROI used in finance is the ratio of net benefits to costs. The 
ROI calculation organizes a project’s costs and benefits into a useful 
profitability measure. 

We estimated the total number of fruits•ha− 1 by multiplying the 
number of pollinated flowers per hectare by the fruit-to-flower ratio of 
apple crops (0.1) (Hünicken et al., 2020). On average, 70% of apple 
production is sold (F. Torres, pers. com.). We obtained monthly whole
sale values for apples at the closest reference markets from March to 
November 2019 (odepa.gob.cl/precios/avance-por-productos-de-
frutas-y-hortalizas). The price depended on the quality of the fruit, 
which was estimated by its individual weight, so we selected an average 
size of 150 g (medium: 130 < weight ≤170 g at 0.70 US$•kg− 1). Pro
duction costs (agrochemicals, salary, gasoline, etc., but rental of honey 
bee colonies excluded) averaged 0.30 US$•kg− 1. The average price paid 
for colony rental for the whole pollination season was 42 US$. 

For each scenario, we estimated a farmer’s profit in US$•ha− 1 as 
follows: 

Prof . apples =
(
nf ∗ 0.1 ∗ 0.7 ∗w ∗ c ∗ sup

)
−
(
nf ∗ 0.1 ∗ 0.7 ∗w ∗ 0.3 ∗ sup

)
,

(7)  

where: 

nf= number of pollinated flowers per hectare; 

w= mean weight of fruits harvested; 
c = price based on fruit weight; 
sup= area cultivated with apples (hectares); 

We then calculated the ROI for all simulated management practices 
in pollination, as follows: 

ROI =
(Prof . apples − (col ∗ p))

(col ∗ p)
, (8) 

Where col is the number of honey bee hives per crop-cultivated area, 
and p corresponds to rental price per colony. Finally, we calculated the 
difference in profitability between the different strategies to evaluate 
their efficiency (ΔROI) 

ΔROI = (ROI8 − ROI4) (9)  

3. Results 

3.1. Apple crops 

The general linear models showed that for the number of visits and 
number of pollinated flowers the important predictors were colony 
density, proportions of focal crop, natural habitats, mass-flowering 
crops, and edge density in the landscape; distance between colony 
groups within the apple fields was not found to be important (see esti
mated coefficients of the models in Table 1, and the relative importance 
of each predictor variable in Appendix C). 

Our results show that as apple cover increased, the number of visits 
per hectare to the crop increased; this increase was not constant, how
ever, being more marked at low cover than at high cover of apple crops 
(Fig. 4a). The main difference in number of visits per hectare between 
treatments was that, on average, the number of visits increased more 
with a high density of honey bee colonies (8 per hectare) than with a low 
density (4 per hectare) for each 1% increase in the area of cultivated 
apples in the landscape (Appendix D). 

With respect to the number of pollinated flowers per hectare, we 
observed that as apple cover increased within the landscape, the number 
of pollinated flowers also increased. However, the rate of increase was 
not constant, being more marked at low cover of apple crops than at high 
cover (Fig. 4b). This implies deceleration of the rate of increase in the 
number of pollinated flowers per hectare of the crop as crop cover in the 
landscapes increased (Fig. 5). 

In apple crops, the number of flowers pollinated was explained by an 
interaction between the cover of apple crops and colony density 
(Table 1). In landscapes with a high cover of apple crops, the difference 
in the number of flowers pollinated between colony densities was lower 
than for low cover (Fig. 4b). In fact, when the cover of apple crops 
exceeded ≈38% of the landscape, the higher colony density generated a 
decrease in the number of flowers pollinated per hectare (Fig. 4b). 

According to these models, the number of visits and the number of 
flowers pollinated decreased with each percentual increment in the 
cover of mass-flowering crops (Fig. 4c and Fig. 4d) and natural habitats 
(Fig. 4e and Fig. 4f) in the surrounding landscape, for both colony 
densities (Table 1). Finally, the number of visits and the number of 
flowers pollinated decreased with increasing edge density in the land
scape. These relationships were consistent for both colony density factor 
levels (Fig 4g and Fig. 4h). 

3.2. Surrounding landscape 

The general linear models showed that for both response variables 
the important predictors were colony density, and the proportions of 
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apple crops, natural habitats, and mass-flowering crops. The remaining 
predictors were not strongly related to the response variables (see esti
mated coefficients of the models in Table 1., and relative importance 
values in Appendix C). 

In the landscapes surrounding the apple crops, the number of visits 
shows nonlinear increases with increasing cover of apple crops, both 
with 4 and 8 colonies per hectare (Fig. 6a; Table 2). Furthermore, as 
apple crop cover increased, the number of visits in the landscape 
increased more rapidly. However, the number of visits to the landscape 
varied with colony density. Comparing landscapes with the low and high 
colony densities, the model predicted a greater increase in the number of 
visits in landscapes with high colony density (Fig. 6a; Table 2). 

In the case of the number of pollinated flowers in the landscape 
surrounding apple crops, the effect was different. The number of polli
nated flowers in the surrounding landscape increased with increasing 
cover of apple crops, but this increase was not constant, being higher at 
low cover of apple crops and lower at high cover of apple crops (Fig. 6b; 
Table 2). This implies a decrease in the rate of increase of the number of 
pollinated flowers in the landscape. This decrease is even greater with 
higher honey bee colony density in apple crops. Thus, when the cover of 
apple crops in the landscape exceeded ≈48% of the total, the average 
rate of change became negative, indicating a decrease in the number of 
pollinated flowers in nearby patches within these landscapes. In the case 
of the lower colony density, this phenomenon was observed when the 
cover of apple crops in the landscape exceeded ≈60% of the total 
landscape (Fig 6b; Table 2). 

In the landscapes surrounding the apple crops, the number of visits 
and the number of pollinated flowers increased with increasing cover of 
mass-flowering crops, for both colony densities (Fig. 6c and Fig. 6d; 
Table 2). Finally, the number of visits and the number of pollinated 
flowers in the landscapes adjacent to the apple crops also increased with 
increasing cover of natural habitats, for both colony densities (Fig. 6e 
and Fig. 6f; Table 2). 

3.3. Return on investment analysis 

When analyzing the return on investment for the different colony 
management strategies, we observed that the average ROI for the sce
narios where honey bee colonies were stocked at 8 per hectare was 29.3 
± 5.6 US$/ha (mean ± SE), while for the scenarios supplied with 4 
colonies per hectare it was 31.5 ± 8.6 US$/ha (mean ± SE). 

However, on closer analysis of the results, the decision to use a 
density of 8 colonies per hectare of crop was more profitable in apple 
orchards with an area of less than 100 cultivated hectares (≈13% of the 
total landscape), in which context the performance was superior to that 
of the investment using 4 colonies per hectare. On the other hand, in 
apple orchards that exceeded 100 cultivated hectares, it was observed 
that using a density of 4 hives per hectare of crop was a more efficient 
and profitable investment than using a higher density of colonies 
(Fig. 7). 

4. Discussion 

Honey bee pollination services directly impact the productivity of 
many important crops that require these services for their viability. 
Applying the model of Joseph et al. (2020) in real agricultural land
scapes, we have demonstrated that colony density has a positive effect 
on the number of visits to the crop, but this does not always ensure a 
higher number of pollinated flowers. Our results show that higher col
ony density can increase the number of pollinated flowers per hectare 
only up to a point, since when the cover of apples ≥40% of landscape 
area, increasing honey bee density through the introduction of a large 
quantity of colonies does not necessarily ensure higher flower pollina
tion (Fig. 5b). These results have strong implications for the manage
ment practices of crop pollination, providing information on how to 
maximize pollination services. 

We found not only a decrease in the number of pollinated flowers per 
hectare of the target crop at the highest colony density, but also an in
crease in the number of visits to the surrounding landscapes, mainly 
mass-flowering crops and the natural habitats; this is due to the 
increasing cover of apple crops and the resulting higher density of honey 
bee colonies in the crops (Appendix D). This increase in the number of 
visits to the landscape is the result of redistribution of honey bee for
agers in search of new foraging sites, due to a decrease in the availability 
of resources in the targeted crop because of high honey bee densities and 
the consequent increase in competition among foragers. Moreover, this 
change in the spatial distribution of honey bee foragers was modulated 
by the blooming period and relative attractiveness of floral resources in 
each land cover class (Riedinger et al., 2014). This spillover mechanism 
of the honey bee foragers from the crops to the adjacent habitats has 
been surprisingly under-researched, even though it is very likely to 
occur frequently in productive landscapes (Dicks et al., 2010; Blitzer 
et al., 2012; Tscharntke et al., 2012; Holzschuh et al., 2016; Osterman 
et al., 2021). 

Our results show that the landscape complexity that surrounds the 
target crop fields moderates the distribution of pollinators in productive 
landscapes. This is because an increase in cover of mass-flowering crops 
and natural habitats generates a decrease in the number of visits to the 
crop, especially when colony density is high. Colony densities were 
greater in landscapes with high cover of apple crops, which led to higher 
densities of honey bees in nearby habitat patches. When blooming, apple 
crops acted as an attractant for honey bees, reducing their densities in 
nearby habitat patches. However, a sizeable honey bee spillover from 
apple crops into adjacent habitats occurred before and after crop bloom. 
While blooming, apple crops can retain to some extent the hive- 
mediated surplus of foragers on a landscape scale. However, this tran
sient attraction effect turned into a massive spillover effect in periods 
before and after the blooming of apple crops, resulting in higher visi
tation rates in other habitats that provide food resources, mainly other 
mass-flowering crops (cherries, blueberries, etc.) and natural habitats 
(Appendix E). This spillover was resource-mediated, since it happened at 
the same time as a sudden shortage in floral resources in apple crops. 
These results are consistent with the theoretical predictions of the cross- 
habitat spillover of mobile organisms across the managed-natural sys
tem interface (Blitzer et al., 2012; Tscharntke et al., 2012), and previous 
studies that document such effects in oilseed rape (Holzschuh et al., 
2011) and orange groves (González-Varo and Vilá. 2017). 

The spatially explicit model presented in this work provides a valu
able insight into the efficiency of different management strategies and 
the effects of landscape composition and configuration on crop polli
nation with managed honey bee colonies. This represents an opportunity 
to improve crop productivity through better management of pollinators. 
In our analysis, we have shown a positive effect of honey bee densities 
on crop visitation rates. However, this relationship seems to be 
nonlinear for the number of pollinated flowers. In this context, 
increasing the number of colonies in the landscape, and consequently, 
the number of honey bee foragers, does not necessarily signify a pro
portional increase of honey bee foragers in the targeted crop, or higher 
pollination. In fact, stocking a field with more colonies does not neces
sary result in higher fruit production (e.g., Viana et al., 2014). Our re
sults have direct implications for farmers’ profits. We estimated that the 
mean return on investment for farmers, averaged across all apple or
chards studied, was 29.3 US$ for the high colony density, and 31.5 US$ 
for the low colony density. Comparing across management strategies, 
the best return of investment outcomes was gained with a low colony 
density (4 cph), except in smaller apple orchards (< 100 ha), where the 
most efficient strategy proved to be high colony density (8 cph). This 
finding is positive for farmers, because routine management practices in 
bee pollination uses the honey bee colony as a management unit, with 
beekeeper and farmer agreeing on a rental price per colony. Therefore, 
our model can help guide decision making regarding the number of 
colonies needed to increase the efficiency of pollination activity at the 

F. Santibañez et al.                                                                                                                                                                                                                             



Ecological Modelling 472 (2022) 110094

11

lowest possible cost. 
It is important to note that our assumption that the values of the 

number of visits per flower needed to ensure full ovule fertilization are 
homogeneous for all land-cover types is an extrapolation. The model 
input parameters are based on values that are still unclear for most 
crops, so sufficient data are not always available to parameterize the 
model. Consequently, we recommend validating the model against 
observational data to ensure its predictions reflect current observed 
reality. Another factor to consider is the estimation of floral attractive
ness based on expert opinion. Experts scored land-cover types inde
pendently, so expert opinion scores may be inaccurate or not yield the 
most appropriate values within our modeling scenario. A more sophis
ticated elicitation method may have provided more reliable final scores, 
allowing the experts to collectively review all opinions and iteratively 
refine and discuss their scores (Gardner et al., 2020). Finally, manage
ment recommendations are highly variable, with strong fluctuations 
depending on the crop, cultivar and spatial context. Therefore, we 
recommend building the modeling scenarios according to the local 
pollination strategies to be evaluated. 

Maximizing production and reducing yield gaps in pollinator- 
dependent crops are key challenges with strong implications for 
farmers and consumers worldwide (Garibaldi et al., 2016). The model 
presented here can serve as a useful tool to assess the effectiveness of 
current pollination practices, and could be used to improve pollination 
practices in different applied contexts. Based on our model results, 
improving pollination through effective management can have a 
potentially large economic effect on farmers’ income. Furthermore, as 
the model can handle cases of resource supplementation (Tscharntke 
et al., 2012), it can provide important insights into the mechanisms 
driving the occurrence and magnitude of honey bee spillover; namely, 
temporal changes in floral resources on local and landscape scales, and 
increased beekeeping on a landscape scale (both to provide pollination 
services to crops and produce honey). Given that in some places polli
nators are managed at densities that are higher than optimal, we expect 
that this model can help guide local management decision making and 
result in more limited spillover (Garibaldi et al., 2017) of managed 
pollinators from crop areas into natural areas, thus reducing their 
potentially detrimental effects (Goulson, 2003; Herbertsson et al., 2016; 
Vanbergen et al., 2018). 
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Appendix A 

Table A1 

Appendix B 

Table B1 

Table A.1 
Blooming period and floral attractiveness (FA) scores for the land-cover types. In 
this work we consider that the resource carrying capacity per cell is 7 g; this is 
constant during the blooming period and equal to zero for the rest of the year. 
The daily resource renewal rate is 100%. See Joseph et al. (2020) for further 
information.  

LULC Code Description Blooming period FA 

1 Other annual crops 0 – 130 0.4 
2 Apples 10 – 40 0.9 
3 Pears 5 – 35 0.9 
4 Hazelnuts 110 – 140 0.9 
5 Blueberries 25 – 55 0.9 
6 Raspberries 5 – 35 0.9 
7 Blackberries 55 – 85 0.9 
8 Cherries 0 – 30 0.9 
9 Kiwis 60 – 90 0.9 
10 Nuts 5 – 35 0.9 
11 Olives 45 – 75 0.4 
12 Natural and semi-natural habitats 0 – 182 0.75 
13 Water courses and water bodies – – 
14 Urban areas 0 – 182 0.05 
15 Bare rocks – – 
16 Glaciers and perpetual snow – –  

Table B.1 
Summary of the main parameters used in the model. We used a set of parameters 
that corresponds to the region of Maule (Chile). Colony life history has been 
modeled following Khoury et al. (2013).  

Description Symbol Value Units References 

Map size  3 km  
Cell size  10 m  
Time step  1 day  
Flowering period  30 days (Lesser Preuss, 2004) 
Flowers per cell  15,000  (Lesser Preuss, 2004) 
Daily renewal rate of 

the resource 
r 100%  adjusted 

Resource carrying 
capacity per cell 

K 7 g (Krlevska et al., 1995;  
Lesser Preuss, 2004) 

Knowledge of the 
environment 

γ 3  adjusted 

Size of squad k 200  arbitrary 
Trips per forager per 

day 
Ntrips 19  (Hagler et al., 2011) 

Flower visited in one 
forager’s trip 

Nflower,trip 75  (Hagler et al., 2011) 

Maximum foraging 
distance 

rf 3 km (Abou-Shaara, 2014) 

Maximum food a 
forager can bring 
back on one trip 

c 0.1 g (Khoury et al., 2013) 

Constant decay rate λ -0.029  (Sáez et al., 2018a) 
Mean efficiency of one 

visit 
p 0.75  (N. Vicens and Bosch 

2000; Rollin and 
Garibaldi, 2019)  
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Appendix C 

Table C1 

Table C.1 
Best models as ranked by AIC (ΔAIC (Δm) < 4). Each row represents one model and columns provide information about each model. Plus and minus signs indicate 
whether the estimates of the effects (columns) of predictors in each model were positive or negative, respectively. Shaded cells indicate that effect (column) is not 
included in the model (row). The relative importance (ri) of each predictor is informed in the last row.  

Apple crops 
No. visits per hectare (ΔAIC (Δm) < 4; AIC best-ranked model = 7235.6) 
Rank ln(apple) ln(apple)2 density distance MFC cover SNH cover ed land density: ln 

(apple) 
density: ln(apple)2 distance: ln(apple) Δm 

1 + + – – – + – 
2 + + – –  + 1.33 
3 + + – – – – + 1.96 
4 + + – – – – + 3.29 
5 + + – – – – + + 3.96 
ri 1 <0.01 1 0.34 1 1 0.66 1 <0.01 0.09  
No. pollinated flowers per hectare (ΔAIC (Δm) < 4; AIC best-ranked model = 6032)   
Rank ln(apple) ln(apple)2 density distance MFC cover SNH cover ed land density: ln 

(apple) 
density: ln(apple)2 distance: ln(apple) Δm 

1 þ – þ – – – þ –  – 
2 þ – þ – – – – þ –  1.95 
3 þ – þ – – – – þ – þ 3.94 
4 þ – þ – – – – þ – þ 3.95 
ri 1 1 1 0.41 1 1 0.97 1 1 0.03  

Surrounding landscape 
No. visits per hectare (ΔAIC (Δm) < 4; AIC best-ranked model = 6586.4) 
Rank apple cover apple cover2 density distance MFC cover SNH cover ed land density: apple density: apple2 distance: apple Δm 

1 + + + + + + + – 
2 + + + + + – + + 1.79 
3 + + + + + + + + 1.99 
4 + + + + + + – + + 3.79 
5 + + + + + + + + – 3.99 
ri 1 1 1 0.36 1 1 0.29 1 1 0.12  
No. pollinated flowers per hectare (ΔAIC (Δm) < 4; AIC best-ranked model = 5749)  
Rank apple cover apple cover2 density distance MFC cover SNH cover ed land density: apple density: apple2 distance: apple Δm 

1 þ – þ þ þ þ –  – 
2 þ – þ þ þ – þ –  1.83 
3 þ – þ þ þ þ þ –  1.98 
4 þ – þ þ þ þ – þ –  3.82 
5 þ – þ þ þ þ þ – – 3.98 
ri 1 1 1 0.36 1 1 0.29 1 1 0.12   
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Appendix D 

Fig D1 

Fig. D.1. The output matrix of the average number of visits per cell generated by the model. The top row shows the landscape sampling unit with the minimum 
percentage of apple crops (0.47%), the middle row shows the landscape sampling unit with the average percentage of apple crops (14.47%), and the bottom row 
shows the landscape sampling unit with the maximum percentage of apple crops (60.6%). The plots on the right side of the figure show the average number of visits 
per cell in apple crops for each colony density. 
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Appendix E 

Fig E1 
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