Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://rid.unrn.edu.ar/handle/20.500.12049/2805

Título: Tectonic evolution of the North Patagonian Andes (41°-44° S) through recognition of syntectonic strata
Autor(es): Echaurren Gonzalez, Andres
Folguera Telichevsky, Andrés
Gianni, Guido M.
Orts, Darío Leandro
Tassara, A.
Encinas, Alfonso
Gimenez, Mario E.
Valencia, V.
Fecha de publicación: 23-may-2016
Citación: Echaurren Gonzalez, Andres., Folguera Telichevsky, Andres., Gianni, Guido M., Orts, Darío L., Tassara, A. & et al. (2016). Tectonic evolution of the North Patagonian Andes (41°-44° S) through recognition of syntectonic strata. Elsevier Science. Tectonophysics; 677-678; 99-114
Revista: Tectonophysics
Resumen: The North Patagonian fold-thrust belt (41° 44° S) is characterized by a low topography, reduced crustal thickness and a broad lateral development determined by a broken foreland system in the retroarc zone. This particular structural system has not been fully addressed in terms of the age and mechanisms that built this orogenic segment. Here, new field and seismic evidence of syntectonic strata constrain the timing of the main deformational stages, evaluating the prevailing crustal regime for the different mountain domains through time. Growth strata and progressive unconformities, controlled by extensional or compressive structures, were recognized in volcanic and sedimentary rocks from the cordilleran to the extra Andean domain. These data were used to construct a balanced cross section, whose deep structure was investigated through a thermomechanical model that characterizes the upper plate rheology. Our results indicate two main compressive stages, interrupted by an extensional relaxation period. The first contractional stage in the mid Cretaceous inverted Jurassic Lower Cretaceous half graben systems, reactivating the western Cañadón Asfalto rift border 500 km away from the trench, at a time of arc foreland expansion. For this stage, available thermochronological data reveal forearc cooling episodes, and global tectonic reconstructions indicate mid ocean ridge collisions against the western edge of an upper plate with rapid trenchward displacement. Widespread synextensional volcanism is recognized throughout the Paleogene during plate reorganization; retroarc Paleocene/Eocene flare up activity is interpreted as product of a slab rollback, and fore to retroarc Oligocene slab/asthenospheric derived products as an expression of enhanced extension. The second stage of mountain growth occurred in Miocene time associated with Nazca Plate subduction, reaching nearly the same amplitude than the first compressive stage. Extensional weakening of the upper plate predating the described contractional stages appears as a necessary condition for abnormal lateral propagation of deformation.
URI: http://www.sciencedirect.com/science/article/pii/S004019511630049X
http://hdl.handle.net/11336/45225
https://rid.unrn.edu.ar/jspui/handle/20.500.12049/2805
Identificador DOI: https://dx.doi.org/10.1016/j.tecto.2016.04.009
ISSN: 0040-1951
Aparece en las colecciones: Artículos


Este documento es resultado del financiamiento otorgado por el Estado Nacional, por lo tanto queda sujeto al cumplimiento de la Ley N° 26.899